当前位置: X-MOL 学术Math. Control Signals Syst. › 论文详情
A new type of singular perturbation approximation for stochastic bilinear systems
Mathematics of Control, Signals, and Systems ( IF 0.976 ) Pub Date : 2020-05-25 , DOI: 10.1007/s00498-020-00257-9
Martin Redmann

Model order reduction (MOR) techniques are often used to reduce the order of spatially discretized (stochastic) partial differential equations and hence reduce computational complexity. A particular class of MOR techniques is balancing related methods which rely on simultaneously diagonalizing the system Gramians. This has been extensively studied for deterministic linear systems. The balancing procedure has already been extended to bilinear equations, an important subclass of nonlinear systems. The choice of Gramians in Al-Baiyat and Bettayeb (In: Proceedings of the 32nd IEEE conference on decision and control, 1993) is the most frequently used approach. A balancing related MOR scheme for bilinear systems called singular perturbation approximation (SPA) has been described that relies on this choice of Gramians. However, no error bound for this method could be proved. In this paper, we extend SPA to stochastic systems with bilinear drift and linear diffusion term. However, we propose a slightly modified reduced order model in comparison to previous work and choose a different reachability Gramian. Based on this new approach, an \(L^2\)-error bound is proved for SPA which is the main result of this paper. This bound is new even for deterministic bilinear systems.
更新日期:2020-05-25

 

全部期刊列表>>
AI核心技术
10years
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
段炼
清华大学
廖矿标
李远
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
电子显微学
何凤
洛杉矶分校
吴杰
赵延川
试剂库存
天合科研
down
wechat
bug