当前位置: X-MOL 学术Astrophys. J.  › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Solar Magnetic-fan Flaring Arch Heated by Nonthermal Particles and Hot Plasma from an X-Ray Jet Eruption
The Astrophysical Journal ( IF 4.8 ) Pub Date : 2020-05-22 , DOI: 10.3847/1538-4357/ab8bce
Kyoung-Sun Lee 1 , Hirohisa Hara 2 , Kyoko Watanabe 3 , Anand D. Joshi 2 , David H. Brooks 4 , Shinsuke Imada 5 , Avijeet Prasad 1 , Phillip Dang 6 , Toshifumi Shimizu 7 , Sabrina L. Savage 8 , Ronald Moore 1, 8 , Navdeep K. Panesar 9, 10 , Jeffrey W. Reep 11
Affiliation  

We have investigated an M1.3 limb flare, which develops as a magnetic loop/arch that fans out from an X-ray jet. Using Hinode/EIS, we found that the temperature increases with height to a value of over 10$^{7}$ K at the loop-top during the flare. The measured Doppler velocity (redshifts of 100$-$500 km s$^{-1}$) and the non-thermal velocity ($\geq$100 km s$^{-1}$) from Fe XXIV also increase with loop height. The electron density increases from $0.3\times10^{9}$ cm$^{-3}$ early in the flare rise to $1.3\times10^{9}$ cm$^{-3}$ after the flare peak. The 3-D structure of the loop derived with STEREO/EUVI indicates that the strong redshift in the loop-top region is due to upflowing plasma originating from the jet. Both hard X-ray and soft X-ray emission from RHESSI were only seen as footpoint brightenings during the impulsive phase of the flare, then, soft X-ray emission moves to the loop-top in the decay phase. Based on the temperature and density measurements and theoretical cooling models, the temperature evolution of the flare arch is consistent with impulsive heating during the jet eruption followed by conductive cooling via evaporation and minor prolonged heating in the top of the fan loop. Investigating the magnetic field topology and squashing factor map from SDO/HMI, we conclude that the observed magnetic-fan flaring arch is mostly heated from low atmospheric reconnection accompanying the jet ejection, instead of from reconnection above the arch as expected in the standard flare model.

中文翻译:

由非热粒子和来自 X 射线喷射喷发的热等离子体加热的太阳能磁扇扩口拱

我们研究了 M1.3 边缘耀斑,它发展为从 X 射线射流中扇出的磁环/拱。使用 Hinode/EIS,我们发现在耀斑期间,环顶处的温度随高度增加超过 10$^{7}$K。来自 Fe XXIV 的测量多普勒速度(红移 100$-$500 km s$^{-1}$)和非热速度($\geq$100 km s$^{-1}$)也随着环高度的增加而增加. 电子密度从耀斑早期的 $0.3\times10^{9}$ cm$^{-3}$ 增加到耀斑峰值后的 $1.3\times10^{9}$ cm$^{-3}$。用 STEREO/EUVI 导出的环的 3-D 结构表明环顶区域的强红移是由于源自射流的上流等离子体。RHESSI 发出的硬 X 射线和软 X 射线都只在耀斑的脉冲阶段被视为脚点增亮,然后,软 X 射线发射在衰变阶段移动到环顶。根据温度和密度测量以及理论冷却模型,火炬拱的温度演变与喷射喷发期间的脉冲加热一致,随后通过蒸发进行传导冷却,并在风扇回路顶部进行轻微的长时间加热。研究来自 SDO/HMI 的磁场拓扑和挤压因子图,我们得出结论,观察到的磁扇火炬拱主要来自伴随射流喷射的低大气重联,而不是像标准火炬模型中预期的那样来自拱上方的重联. 火炬拱的温度演变与喷射喷发期间的脉冲加热一致,随后通过蒸发进行传导冷却,并在风扇回路顶部进行轻微的长时间加热。研究来自 SDO/HMI 的磁场拓扑和挤压因子图,我们得出结论,观察到的磁扇火炬拱主要来自伴随射流喷射的低大气重联,而不是像标准火炬模型中预期的那样来自拱上方的重联. 火炬拱的温度演变与喷射喷发期间的脉冲加热一致,随后通过蒸发进行传导冷却,并在风扇回路顶部进行轻微的长时间加热。研究来自 SDO/HMI 的磁场拓扑和挤压因子图,我们得出结论,观察到的磁扇火炬拱主要来自伴随射流喷射的低大气重联,而不是像标准火炬模型中预期的那样来自拱上方的重联.
更新日期:2020-05-22
down
wechat
bug