当前位置: X-MOL 学术J. Adv. Model. Earth Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cold Pool Responses to Changes in Soil Moisture
Journal of Advances in Modeling Earth Systems ( IF 6.8 ) Pub Date : 2020-08-05 , DOI: 10.1029/2019ms001922
Aryeh J. Drager 1 , Leah D. Grant 1 , Susan C. Heever 1
Affiliation  

This study examines the role of soil moisture in modulating convective cold pool properties in an idealized modeling framework that uses a cloud‐resolving model coupled to an interactive land surface model. Five high‐resolution simulations of tropical continental convection are conducted in which the initial soil moisture is varied. The hundreds of cold pools forming within each simulation are identified and composited across space and time using an objective cold pool identification algorithm. Several important findings emerge from this analysis. Lower soil moisture results in greater daytime heating of the surface, which produces a deeper, drier subcloud layer. As a result, latent cooling through the evaporation of precipitation is enhanced, and cold pools are stronger and deeper. Increased propagation speed, combined with wider rain shafts, results in wider cold pools. Finally, the rings of enhanced water vapor that surround each cold pool when soil is wet disappear when the soil moisture is reduced, due to the suppression of surface latent heat fluxes. Instead, short‐lived “puddles” of enhanced water vapor permeate the cold pools. The results are nonlinear in that the properties of the cold pools in the two driest‐soil simulations depart substantially from the cold pool properties in the three simulations initialized with wetter soil. The dividing line between the resulting wet‐soil and dry‐soil regimes is the permanent wilting point. Below the permanent wilting point, transpiration is subdued due to a sharp increase in water stress. These results emphasize the role of land surface‐boundary layer‐cloud interactions in modulating cold pool properties.

中文翻译:

冷池对土壤水分变化的响应

本研究在理想化的建模框架中研究了土壤水分在调节对流冷池特性中的作用,该框架使用云解析模型与交互式地表模型耦合。对热带大陆对流进行了五次高分辨率模拟,其中初始土壤湿度变化。使用客观的冷池识别算法,可以识别并模拟每个模拟中形成的数百个冷池,并跨越空间和时间对其进行合成。这项分析得出了一些重要发现。较低的土壤水分会导致白天更大的表面加热,从而产生更深,更干燥的亚云层。结果,通过沉淀物蒸发的潜冷得到增强,冷池变得更强更深。传播速度加快,加上雨轴更宽,导致更宽的冷池。最后,由于土壤表面潜热通量的抑制,当土壤潮湿时,围绕每个冷池的水蒸气增强环消失,当土壤水分减少时,这些环消失。取而代之的是,短暂的增强的水蒸气“水坑”渗透到了冷水池中。结果是非线性的,因为在两个最干燥土壤模拟中的冷池特性与用湿土初始化的三个模拟中的冷池特性大不相同。由此产生的湿土壤制度和干土壤制度之间的分界线是永久性的萎wil点。在永久萎以下,由于水分胁迫的急剧增加,蒸腾作用减弱。这些结果强调了地表-边界层-云相互作用在调节冷池特性中的作用。当土壤湿润时,由于抑制了表面潜热通量,当土壤湿润时,围绕每个冷水池的水蒸气增强环消失了。取而代之的是,短暂的增强的水蒸气“水坑”渗透到了冷水池中。结果是非线性的,因为在两个最干燥土壤模拟中的冷池特性与用湿土初始化的三个模拟中的冷池特性大不相同。由此产生的湿土壤制度和干土壤制度之间的分界线是永久性的萎wil点。在永久萎以下,由于水分胁迫的急剧增加,蒸腾作用减弱。这些结果强调了地表-边界层-云相互作用在调节冷池特性中的作用。当土壤湿润时,由于抑制了表面潜热通量,当土壤湿润时,围绕每个冷池的水蒸气增强环消失了。取而代之的是,短暂的增强的水蒸气“水坑”渗透到了冷水池中。结果是非线性的,因为在两个最干燥土壤模拟中的冷池特性与用湿土初始化的三个模拟中的冷池特性大不相同。由此产生的湿土壤制度和干土壤制度之间的分界线是永久性的萎wil点。在永久萎以下,由于水分胁迫的急剧增加,蒸腾作用减弱。这些结果强调了地表-边界层-云相互作用在调节冷池特性中的作用。
更新日期:2020-08-05
down
wechat
bug