当前位置: X-MOL 学术Algal. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering bacteria-seaweed symbioses for modulating the photosynthate content of Ulva (Chlorophyta): Significant for the feedstock of bioethanol production
Algal Research ( IF 4.6 ) Pub Date : 2020-05-23 , DOI: 10.1016/j.algal.2020.101945
Mark Polikovsky , Gianmaria Califano , Nico Dunger , Thomas Wichard , Alexander Golberg

Seaweed biomass cultivation predicates the quantity and quality of this biorefinery feedstock. Unfortunately, the seaweed growth rate and chemical content are hardly predictable and are affected by environmental factors, including epiphytic bacteria. We hypothesize that microbiome engineering can control the chemical composition of Ulva biomass. We show that the engineered Maribacter sp. and Roseovarius sp. consortium modulate Ulva mutabilis growth rate and photosynthate content of constituents relevant for bioethanol production. Although minimal growth was observed in the axenic cultures (0.04 mm day−1), Ulva mutabilis in a tripartite community showed a growth rate of 3.79 mm day−1 in the growth phase. Furthermore, the content of glucose and glycerol in Ulva of the engineered community increased by 77 ± 19% and 460 ± 207% whereas xylose and glucuronic acid decreased by 37 ± 14% and 46 ± 15% in comparison to axenic culture.

Interestingly, bacterial addition affected the rhamnose/xylose/glucuronic acid ratio (1.96:1:1: vs 1.34:0.85:1 in xenic vs axenic culture), indicating the impact of bacteria on ulvan synthesis. In addition, tyrosine and histidine increased by 191 ± 61% and 40 ± 26%; however, valine, isoleucine, aspartate, threonine, serine, and phenylalanine decreased by 22 ± 19% - 42 ± 23%. Flux-balance analysis of Saccharomyces cerevisiae, Escherichia coli, and Clostridium acetobutylicum was used to estimate the bioethanol yield from hydrolyzed Ulva biomass, in a one-step or two-step fermentation process. Simulation using S. cerevisiae (RN1016) with xylose isomerase resulted in a bioethanol yield of 85.62 for xenic vs. 71.31 mg/g dry weight (DW) axenic cultures of Ulva.

The increased growth rate and the relative amounts of photosynthates of U. mutabilis are modulated by the engineered microbiome. Moreover, it results in biomass with a higher potential for bioethanol fermentation in comparison to axenic cultures.



中文翻译:

工程细菌-海藻共生体,用于调节Ulva(Chlorophyta)的光合产物含量:对生产生物乙醇的原料具有重要意义

海藻生物量的培养决定了这种生物精炼原料的数量和质量。不幸的是,海藻的生长速度和化学含量很难预测,并且受包括附生细菌在内的环境因素的影响。我们假设微生物组工程学可以控制Ulva生物质的化学成分。我们显示了工程化的Maribacter sp。和Roseovarius sp。协会调节Ulva mutabilis的生长速率和与生物乙醇生产相关的成分的光合产物含量。尽管在轴生细菌培养物中观察到最小的生长(0.04 mm第一天-1),但在三方群落中的Ulva mutabilis的生长速率为3.79 mm一天-1在生长期。此外,工程群落的Ulva中的葡萄糖和甘油含量与抗氧剂培养相比分别增加了77±19%和460±207%,而木糖和葡糖醛酸减少了37±14%和46±15%。

有趣的是,细菌的添加影响了鼠李糖/木糖/葡糖醛酸的比例(在异种与异种培养中为1.96:1:1:vs 1.34:0.85:1),表明细菌对ulvan合成的影响。另外,酪氨酸和组氨酸分别增加了191±61%和40±26%。但是,缬氨酸,异亮氨酸,天冬氨酸,苏氨酸,丝氨酸和苯丙氨酸下降了22±19%-42±23%。酿酒酵母大肠埃希氏菌丙酮丁醇梭菌的通量平衡分析用于估算一步或两步发酵过程中水解的Ulva生物质的生物乙醇产量。使用S进行仿真。酿酒酵母(RN1016)与木糖异构酶导致的85.62用于对比xenic 71.31毫克/克干重(DW)的纯性培养物生物乙醇产量石莼

U的生长速率和光合产物的相对数量增加。突变菌是由工程微生物组调节的。此外,与轴突培养相比,它产生的生物质具有更高的生物乙醇发酵潜力。

更新日期:2020-05-23
down
wechat
bug