当前位置: X-MOL 学术IEEE Open J. Intell. Transp. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optoelectronic and Environmental Factors Affecting the Accuracy of Crowd-Sourced Vehicle-Mounted License Plate Recognition
IEEE Open Journal of Intelligent Transportation Systems ( IF 4.6 ) Pub Date : 2020-04-30 , DOI: 10.1109/ojits.2020.2991402
M. C. Rademeyer 1 , A. Barnard 1 , M. J. Booysen 1
Affiliation  

License plate recognition (LPR) technology has been used to combat vehicle-related crime in urban areas in many developed contexts. However, commercially available LPR systems are expensive and not feasible for large scale adoption in developing countries. The development of a low-cost crowd-sourced solution requires an informed approach to the selection of an appropriate camera, as well as a realistic understanding of the system’s performance under various environmental conditions. This work investigates the effect of optoelectronic and environmental factors on the ability of a vehicle-mounted LPR system to correctly identify license plates, specifically for a mass-deployment crowd-sourced scenario. A theoretical LPR camera model was developed to estimate the effect of different cameras, while the effects of motion, orientation and lighting were evaluated in a series of experimental tests. The most influential optoelectronic factors were shown to be focus, focal length and image sensor resolution. Furthermore, recognition was impaired during high-speed turn maneuvers, angling of license plates away from the camera and certain night-time conditions. The optoelectronic model proved useful for the selection of a cost-effective camera for use in an open-source LPR system. Moreover, the study of environmental factors provided valuable insight into the limitations of LPR systems in various environmental and traffic conditions.
更新日期:2020-04-30
down
wechat
bug