当前位置: X-MOL 学术Phys. Rev. X › 论文详情
Building general Langevin models from discrete data sets
Physical Review X ( IF 12.211 ) Pub Date : 
Federica Ferretti; Victor Chardès; Thierry Mora; Aleksandra M. Walczak; Irene Giardina

Many living and complex systems exhibit second order emergent dynamics. Limited experimental access to the configurational degrees of freedom results in data that appears to be generated by a non-Markovian process. This poses a challenge in the quantitative reconstruction of the model from experimental data, even in the simple case of equilibrium Langevin dynamics of Hamiltonian systems. We develop a novel Bayesian inference approach to learn the parameters of such stochastic effective models from discrete finite length trajectories. We first discuss the failure of naive inference approaches based on the estimation of derivatives through finite differences, regardless of the time resolution and the length of the sampled trajectories. We then derive, adopting higher order discretization schemes, maximum likelihood estimators for the model parameters that provide excellent results even with moderately long trajectories. We apply our method to second order models of collective motion and show that our results also hold in the presence of interactions.
更新日期:2020-05-22

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug