当前位置: X-MOL 学术Geophys. Prospect. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Velocity and event slope analysis using a model‐based common diffraction surface stack operator
Geophysical Prospecting ( IF 1.8 ) Pub Date : 2020-06-15 , DOI: 10.1111/1365-2478.12969
Hashem Shahsavani 1 , Zeno Heilmann 2
Affiliation  

ABSTRACT Over the last two decades, scientists have introduced many ways to improve normal moveout velocity analysis by optimizing the resolution of the moveout velocity spectrum, a graph that displays a coherence value for every tested velocity traveltime pair. Almost all of these methods have failed to enhance resolution when faced with low‐fold common‐midpoint gathers, which might be caused by natural barriers or man‐made obstacles. Another problem is that many approaches are derived from very simple model assumptions that quickly break down for complex structures and do not provide enough model flexibility for an iterative and interactive velocity analysis. In this paper, we present a new velocity analysis method based on the model‐based common‐diffraction‐surface stack operator and apply it to two synthetic data sets, one with locally sparse common‐midpoint coverage and one with a laterally variable complex geological structure. We generate velocity spectra by calculating the semblance along spatial operators obtained for all possible emergence angles and an entire range of velocity models. Comparing the resolution of such velocity spectra with those obtained with the classical normal moveout velocity analysis shows, in both two analysed cases, that the stacking velocity can be estimated much more precisely. The reasons for this are that the event dip is handled independently from the velocity and that the semblance is obtained, for each zero‐offset sample, over a group of neighbouring common‐midpoint gathers instead of just one.

中文翻译:

使用基于模型的通用衍射表面叠加算子进行速度和事件斜率分析

摘要 在过去的 20 年里,科学家们引入了许多方法来通过优化时差速度谱的分辨率来改进正常时差速度分析,时差速度谱是一个显示每个测试速度走时对的相干值的图形。当遇到低倍公共中点道集时,几乎所有这些方法都未能提高分辨率,这可能是由自然障碍或人为障碍引起的。另一个问题是,许多方法源自非常简单的模型假设,这些假设对于复杂结构会迅速分解,并且不能为迭代和交互式速度分析提供足够的模型灵活性。在本文中,我们提出了一种基于模型的共衍射表面叠加算子的新速度分析方法,并将其应用于两个合成数据集,一种具有局部稀疏的公共中点覆盖范围,另一种具有横向可变的复杂地质结构。我们通过计算为所有可能的出射角和整个速度模型范围获得的空间算子的相似性来生成速度谱。将这种速度谱的分辨率与经典法向时差速度分析获得的分辨率进行比较表明,在两种分析情况下,可以更精确地估计叠加速度。其原因是事件倾角是独立于速度处理的,并且对于每个零偏移样本,在一组相邻的公共中点道集上获得了相似性,而不仅仅是一个。我们通过计算为所有可能的出射角和整个速度模型范围获得的空间算子的相似性来生成速度谱。将这种速度谱的分辨率与经典法向时差速度分析获得的分辨率进行比较表明,在两种分析情况下,可以更精确地估计叠加速度。其原因是事件倾角是独立于速度处理的,并且对于每个零偏移样本,在一组相邻的公共中点道集上获得了相似性,而不仅仅是一个。我们通过计算为所有可能的出射角和整个速度模型范围获得的空间算子的相似性来生成速度谱。将这种速度谱的分辨率与经典法向时差速度分析获得的分辨率进行比较表明,在两种分析情况下,可以更精确地估计叠加速度。其原因是事件倾角是独立于速度处理的,并且对于每个零偏移样本,在一组相邻的公共中点道集上获得了相似性,而不仅仅是一个。在这两种分析的情况下,可以更精确地估计堆叠速度。其原因是事件倾角是独立于速度处理的,并且对于每个零偏移样本,在一组相邻的公共中点道集上获得了相似性,而不仅仅是一个。在这两种分析的情况下,可以更精确地估计堆叠速度。其原因是事件倾角是独立于速度处理的,并且对于每个零偏移样本,在一组相邻的公共中点道集上获得了相似性,而不仅仅是一个。
更新日期:2020-06-15
down
wechat
bug