当前位置: X-MOL 学术Bull. Lond. Math. Soc. › 论文详情
Dorronsoro's theorem in Heisenberg groups
Bulletin of the London Mathematical Society ( IF 0.767 ) Pub Date : 2020-05-22 , DOI: 10.1112/blms.12341
Katrin Fässler; Tuomas Orponen

A theorem of Dorronsoro from the 1980s quantifies the fact that real‐valued Sobolev functions on Euclidean spaces can be approximated by affine functions almost everywhere, and at all sufficiently small scales. We prove a variant of Dorronsoro's theorem in Heisenberg groups: functions in horizontal Sobolev spaces can be approximated by affine functions which are independent of the last variable. As an application, we deduce new proofs for certain vertical versus horizontal Poincaré inequalities for real‐valued functions on the Heisenberg group, originally due to Austin–Naor–Tessera and Lafforgue–Naor.
更新日期:2020-05-22

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug