当前位置: X-MOL 学术J. Geophys. Res. Atmos. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analysis of the Thermodynamic Phase Transition of Tracked Convective Clouds Based on Geostationary Satellite Observations
Journal of Geophysical Research: Atmospheres ( IF 4.4 ) Pub Date : 2020-05-21 , DOI: 10.1029/2019jd032146
Q. Coopman 1 , C. Hoose 1 , M. Stengel 2
Affiliation  

Clouds are liquid at temperature greater than 0°C and ice at temperature below −38°C. Between these two thresholds, the temperature of the cloud thermodynamic phase transition from liquid to ice is difficult to predict and the theory and numerical models do not agree: Microphysical, dynamical, and meteorological parameters influence the glaciation temperature. We temporally track optical and microphysical properties of 796 clouds over Europe from 2004 to 2015 with the space‐based instrument Spinning Enhanced Visible and Infrared Imager on board the geostationary METEOSAT second generation satellites. We define the glaciation temperature as the mean between the cloud top temperature of those consecutive images for which a thermodynamic phase change in at least one pixel is observed for a given cloud object. We find that, on average, isolated convective clouds over Europe freeze at −21.6°C. Furthermore, we analyze the temporal evolution of a set of cloud properties and we retrieve glaciation temperatures binned by meteorological and microphysical regimes: For example, the glaciation temperature increases up to 11°C when cloud droplets are large, in line with previous studies. Moreover, the correlations between the parameters characterizing the glaciation temperature are compared and analyzed and a statistical study based on principal component analysis shows that after the cloud top height, the cloud droplet size is the most important parameter to determine the glaciation temperature.

中文翻译:

基于地球静止卫星观测的对流云的热力相变分析

在高于0°C的温度下,云层为液态,而在低于-38°C的温度下,云层为冰。在这两个阈值之间,从液体到冰的云层热力学相变温度很难预测,理论和数值模型也不一致:微物理,动力学和气象参数会影响冰川化温度。我们使用固定在地球静止的METEOSAT第二代卫星上的天基仪器Spinning Enhanced Visible and Infrared Imager,从2004年到2015年对欧洲796朵云的光学和微物理性质进行了时间跟踪。我们将冰川温度定义为连续图像的云顶温度之间的平均值,对于给定的云物体,连续图像的云顶温度至少观察到一个像素。我们发现平均而言,欧洲上空孤立的对流云在-21.6°C冻结。此外,我们分析了一组云特性的时间演变,并检索了由气象和微物理机制划分的冰川温度:例如,与以前的研究一致,当云滴很大时,冰川温度会升高至11°C。此外,比较和分析了表征冰川温度的参数之间的相关性,基于主成分分析的统计研究表明,在云顶高度之后,云滴尺寸是确定冰川温度的最重要参数。我们分析了一组云属性的时间演变,并检索了由气象和微物理机制划分的冰川温度:例如,与以前的研究一致,当云滴很大时,冰川温度会升高至11°C。此外,比较和分析了表征冰川温度的参数之间的相关性,基于主成分分析的统计研究表明,在云顶高度之后,云滴尺寸是确定冰川温度的最重要参数。我们分析了一组云属性的时间演变,并检索了由气象和微物理机制划分的冰川温度:例如,与以前的研究一致,当云滴很大时,冰川温度会升高至11°C。此外,比较和分析了表征冰川温度的参数之间的相关性,基于主成分分析的统计研究表明,在云顶高度之后,云滴尺寸是确定冰川温度的最重要参数。
更新日期:2020-05-21
down
wechat
bug