当前位置: X-MOL 学术Med. Eng. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simulation of a microfluidic device employing dielectrophoresis for liquid biopsy.
Medical Engineering & Physics ( IF 1.7 ) Pub Date : 2020-05-22 , DOI: 10.1016/j.medengphy.2020.05.017
Fadi Alnaimat 1 , Bobby Mathew 1 , Anas Alazzam 2
Affiliation  

This article details simulation based study of cell separation in a dielectrophoretic microfluidic device. The device consists of a narrow microchannel connected to a wide microchannel with several finite sized planar interdigitated transducer electrodes protruding into the narrow microchannel from one of its sidewalls. In the narrow microchannel, the circulating tumor cells are subjected to positive dielectrophoresis while the regular cells are subjected to negative dielectrophoresis to achieve separation and as all cells move in to the wide microchannel, the physical distance between the two types of cells increases thereby making their collection from the device easier. Equations describing motion, fluid field, electric field, and electric potential form the mathematical model and accounts for forces related to inertia, drag, and dielectrophoresis. Applied electric potential, electrode/gap length, and tumor cell diameter have a positive effect on the performance metrics while velocity of the medium and microchannel width have negative effect on the performance metrics. The model presented in this article is beneficial in realizing liquid biopsy with the desired performance metrics using the proposed microfluidic device.



中文翻译:

使用介电电泳进行液体活检的微流控设备的仿真。

本文详细介绍了基于模拟的介电泳微流控设备中细胞分离的研究。该设备由连接到宽微通道的窄微通道组成,该微通道具有从其侧壁之一突出到窄微通道中的几个有限尺寸的平面叉指式换能器电极。在狭窄的微通道中,对循环中的肿瘤细胞进行正介电电泳,而对常规细胞进行负介电电泳以实现分离,并且当所有细胞移入宽微通道时,两种类型的细胞之间的物理距离增加,从而使其从设备收集更容易。描述运动,流场,电场和电势的方程式构成了数学模型,并说明了与惯性,阻力,和介电泳。施加的电势,电极/间隙长度和肿瘤细胞直径对性能指标有积极影响,而中速和微通道宽度对性能指标有不利影响。本文中提出的模型有利于使用所提出的微流控设备实现具有所需性能指标的液体活检。

更新日期:2020-06-23
down
wechat
bug