当前位置: X-MOL 学术J. Process Control › 论文详情
A wave propagation approach for reduced dynamic modeling of distillation columns: Optimization and control
Journal of Process Control ( IF 3.316 ) Pub Date : 2020-05-22 , DOI: 10.1016/j.jprocont.2020.05.004
Adrian Caspari; Christoph Offermanns; Anna-Maria Ecker; Martin Pottmann; Gerhard Zapp; Adel Mhamdi; Alexander Mitsos

Reduced models enable real-time optimization of large-scale processes. We propose a reduced model of distillation columns based on multicomponent nonlinear wave propagation (Kienle 2000). We use a nonlinear wave equation in dynamic mass and energy balances. We thus combine the ideas of compartment modeling and wave propagation. In contrast to existing reduced column models based on nonlinear wave propagation, our model deploys a hydraulic correlation. This enables the column holdup to change as load varies. The model parameters can be estimated solely based on steady-state data. The new transient wave propagation model can be used as a controller model for flexible process operation including load changes. To demonstrate this, we implement full-order and reduced dynamic models of an air separation process and multi-component distillation column in Modelica. We use the open-source framework DyOS for the dynamic optimizations and an Extended Kalman Filter for state estimation. We apply the reduced model in-silico in open-loop forward simulations as well as in several open- and closed-loop optimization and control case studies, and analyze the resulting computational speed-up compared to using full-order stage-by-stage column models. The first case study deals with tracking control of a single air separation distillation column, whereas the second one addresses economic model predictive control of an entire air separation process. The reduced model is able to adequately capture the transient column behavior. Compared to the full-order model, the reduced model achieves highly accurate profiles for the manipulated variables, while the optimizations with the reduced model are significantly faster, achieving more than 95% CPU time reduction in the closed-loop simulation and more than 96% in the open-loop optimizations. This enables the real-time capability of the reduced model in process optimization and control.
更新日期:2020-05-22

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug