当前位置: X-MOL 学术Int. J. Multiphase Flow › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A simulation-derived surrogate model for the vaporization rate of aluminum droplets heated by a passing shock wave
International Journal of Multiphase Flow ( IF 3.6 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.ijmultiphaseflow.2020.103299
Pratik Das , H.S. Udaykumar

The vaporization rate of aluminum droplets in shocked flows plays a crucial role in determining the energy release rate during the combustion of the aluminized energetic materials. In this paper, the physics of the vaporization of aluminum droplets in shocked flows is numerically investigated. Surrogate models for the temporally averaged Sherwood number and Nusselt number, cast as functions of shock Mach number and Reynolds number, are developed from the simulation-based data. The results show that the Sherwood number and the Nusselt number of the droplet increase monotonically with the Reynolds number. On the other hand, the Sherwood number and the Nusselt number exhibit non-monotonic behavior with increasing shock Mach number due to the transition of the post-shock flow from subsonic to the supersonic speeds as the shock Mach number is increased from 1.1 to 3.5. In contrast with available models in the literature that are commonly used in process scale computations of aluminum droplet vaporization, the current models for the Sherwood number and the Nusselt number are applicable over a wide range of the Reynolds number and the Mach number and will be useful in the macro-scale multi-phase simulations of the combustion of aluminumized energetic materials in high-speed flows.

中文翻译:

由经过的冲击波加热的铝液滴蒸发率的模拟衍生替代模型

铝滴在冲击流中的蒸发速率在决定含铝含能材料燃烧过程中的能量释放速率方面起着至关重要的作用。在本文中,数值研究了冲击流中铝液滴蒸发的物理过程。时间平均舍伍德数和努塞尔特数的替代模型,作为激波马赫数和雷诺数的函数,是根据基于模拟的数据开发的。结果表明,液滴的舍伍德数和努塞尔数随着雷诺数的增加而单调增加。另一方面,由于当激波马赫数从 1.1 增加到 3.5 时,后激波流从亚音速过渡到超音速,舍伍德数和努塞尔特数随着激波马赫数的增加表现出非单调行为。与文献中常用的铝液滴蒸发过程规模计算模型相比,舍伍德数和努塞尔数的当前模型适用于雷诺数和马赫数的广泛范围,并且非常有用在高速流动中铝化含能材料燃烧的宏观多相模拟中。
更新日期:2020-09-01
down
wechat
bug