当前位置: X-MOL 学术Comput. Geosci. › 论文详情
Recursive convolutional neural networks in a multiple-point statistics framework
Computers & Geosciences ( IF 2.721 ) Pub Date : 2020-05-22 , DOI: 10.1016/j.cageo.2020.104522
Sebastian Avalos; Julian M. Ortiz

This work proposes a new technique for multiple-point statistics simulation based on a recursive convolutional neural network approach coined RCNN. The work focuses on methodology and implementation rather than performance to demonstrate the potential of deep learning techniques in geosciences. Two and three dimensional case studies are carried out. A sensitivity analysis is presented over the main RCNN structural parameters using a well-known training image of channel structures in two dimensions. The optimum parameters found are applied into image reconstruction problems using two other training images. A three dimensional case is shown using a synthetic lithological surface-based model. The quality of realizations is measured by statistical, spatial and accuracy metrics. The RCNN method is compared to standard MPS techniques and an improving framework is proposed by using the RCNN E-type as secondary information. Strengths and weaknesses of the methodology are discussed by reviewing the theoretical and practical aspects.
更新日期:2020-05-22

 

全部期刊列表>>
Springer化学材料学
骄傲月
如何通过Nature平台传播科研成果
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
南开大学
朱守非
廖良生
郭东升
汪铭
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug