当前位置: X-MOL 学术Commun. Math. Phys. › 论文详情
Nonlocal Minimal Graphs in the Plane are Generically Sticky
Communications in Mathematical Physics ( IF 2.239 ) Pub Date : 2020-05-22 , DOI: 10.1007/s00220-020-03771-8
Serena Dipierro, Ovidiu Savin, Enrico Valdinoci

We prove that nonlocal minimal graphs in the plane exhibit generically stickiness effects and boundary discontinuities. More precisely, we show that if a nonlocal minimal graph in a slab is continuous up to the boundary, then arbitrarily small perturbations of the far-away data produce boundary discontinuities. Hence, either a nonlocal minimal graph is discontinuous at the boundary, or a small perturbation of the prescribed conditions produces boundary discontinuities. The proof relies on a sliding method combined with a fine boundary regularity analysis, based on a discontinuity/smoothness alternative. Namely, we establish that nonlocal minimal graphs are either discontinuous at the boundary or their derivative is Hölder continuous up to the boundary. In this spirit, we prove that the boundary regularity of nonlocal minimal graphs in the plane “jumps” from discontinuous to \(C^{1,\gamma }\), with no intermediate possibilities allowed. In particular, we deduce that the nonlocal curvature equation is always satisfied up to the boundary. As an interesting byproduct of our analysis, one obtains a detailed understanding of the “switch” between the regime of continuous (and hence differentiable) nonlocal minimal graphs to that of discontinuous (and hence with differentiable inverse) ones.
更新日期:2020-05-22

 

全部期刊列表>>
Springer化学材料学
骄傲月
如何通过Nature平台传播科研成果
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
南开大学
朱守非
廖良生
郭东升
汪铭
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug