当前位置: X-MOL 学术Arab. J. Sci. Eng. › 论文详情
Estimation of Traffic Incident Duration: A Comparative Study of Decision Tree Models
Arabian Journal for Science and Engineering ( IF 1.518 ) Pub Date : 2020-05-22 , DOI: 10.1007/s13369-020-04615-2
Abdulsamet Saracoglu, Halit Ozen

Unexpected events such as crashes, disabled vehicles, flat tires and spilled loads cause traffic congestion or extend the duration of the traffic congestion on the roadways. It is possible to reduce the effects of such incidents by implementing intelligent transportation systems solutions that require the estimation of the incident duration to identify well-fitted strategies. This paper presents a methodology to establish incident duration estimation models by utilizing decision tree models of CHAID, CART, C4.5 and LMT. For this study, the data contained traffic incidents that occurred on the Istanbul Trans European Motorway were obtained and separated into three groups according to duration by utilizing some studies about classification of traffic incidents. By using classified data, decision tree models of CHAID, CART, C4.5 and LMT were established and validated to estimate the incident duration. According to the results, although the models used different variables, the decision tree models of CHAID, CART and C4.5 have nearly the same prediction accuracy which is approximately 74%. On the other hand, the prediction accuracy of decision tree model of LMT is 75.4% which is somewhat better than the others. However, C4.5 model required less number of parameters than the others, while its accuracy is the same with others.
更新日期:2020-05-22

 

全部期刊列表>>
如何通过Nature平台传播科研成果
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
中洪博元
ACS材料视界
x-mol收录
南开大学
朱守非
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug