当前位置: X-MOL 学术Enzyme Microb. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering the heparin-binding pocket to enhance the catalytic efficiency of a thermostable heparinase III from Bacteroides thetaiotaomicron
Enzyme and Microbial Technology ( IF 3.4 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.enzmictec.2020.109549
Hao Wang 1 , Lin Zhang 1 , Yang Wang 1 , Jianghua Li 1 , Guocheng Du 1 , Zhen Kang 1
Affiliation  

Heparinase has attracted much attention because of its applications in pharmaceutical industry. Herein, the heparinases III from Flavobacterium heparinum (FhepIII) and Bacteroides thetaiotaomicron (BhepIII) were firstly comparatively characterized. BhepIII showed higher catalytic activity and thermostability toward heparin comparing to FhepIII. To further upgraded BhepIII, a protein engineering approach based on B-factor was performed. By site-saturated mutagenesis of the flexible residues within an 8 Å radius around the catalytic residue, Asp321 and Ser264 were identified as essential residues for catalytic efficiency and thermostability, respectively. D321Q mutation enhanced catalytic efficiency (kcat/Km) with a 68.4% increase by increasing the surface potential while S264 F mutation increased thermostability with a half-time at 50℃ (t1/250℃) of 3.8 h versus 2.7 h of the wild-type by increasing rigidity and interactions within the active pocket. Double mutation of S264 F and D321Q resulted in a 245% increase in kcat/Km but with a decreased t1/250℃ (2.0 h). E105R mutation that generated a 348% increase in kcat/Km was further identified by electric potential engineering of the pocket tunnel. Eventually, the variant E105R/S264 F that showed a 418% increase in kcat/Km without compromise of thermostability was constructed. The engineered E105R/S264 F has a great potential for the commercial production of low molecular weight heparin in the future.

中文翻译:

改造肝素结合口袋以提高来自 Bacteroides thetaiotaomicron 的热稳定肝素酶 III 的催化效率

肝素酶因其在制药工业中的应用而备受关注。在此,首次对肝素黄杆菌(FhepIII) 和Bacteroides thetaiotaomicron (BhepIII) 中的肝素酶III 进行了比较表征。与 FhepIII 相比,BhepIII 对肝素显示出更高的催化活性和热稳定性。为了进一步升级 BhepIII,进行了基于 B 因子的蛋白质工程方法。通过在催化残基周围 8 Å 半径内对柔性残基进行位点饱和诱变,Asp321 和 Ser264 分别被确定为催化效率和热稳定性的必需残基。D321Q 突变提高了催化效率 (kcat/Km) 为 68。通过增加表面电位增加 4%,而 S264 F 突变通过增加活性口袋内的刚度和相互作用,增加了热稳定性,50℃(t1/250℃)的半衰期为 3.8 小时,而野生型为 2.7 小时。S264 F和D321Q的双突变导致kcat/Km增加245%,但t1/250℃(2.0 h)降低。通过口袋隧道的电势工程进一步确定了使 kcat/Km 增加 348% 的 E105R 突变。最终,构建了在不影响热稳定性的情况下显示 kcat/Km 增加 418% 的变体 E105R/S264 F。工程化的 E105R/S264 F 在未来低分子量肝素的商业化生产方面具有巨大的潜力。S264 F和D321Q的双突变导致kcat/Km增加245%,但t1/250℃(2.0 h)降低。通过口袋隧道的电势工程进一步确定了使 kcat/Km 增加 348% 的 E105R 突变。最终,构建了在不影响热稳定性的情况下显示 kcat/Km 增加 418% 的变体 E105R/S264 F。工程化的 E105R/S264 F 在未来低分子量肝素的商业化生产方面具有巨大的潜力。S264 F和D321Q的双突变导致kcat/Km增加245%,但t1/250℃(2.0 h)降低。通过口袋隧道的电势工程进一步确定了使 kcat/Km 增加 348% 的 E105R 突变。最终,构建了在不影响热稳定性的情况下显示 kcat/Km 增加 418% 的变体 E105R/S264 F。工程化的 E105R/S264 F 在未来低分子量肝素的商业化生产方面具有巨大的潜力。构建了变体 E105R/S264 F,在不影响热稳定性的情况下,kcat/Km 增加了 418%。工程化的 E105R/S264 F 在未来低分子量肝素的商业化生产方面具有巨大的潜力。构建了变体 E105R/S264 F,在不影响热稳定性的情况下,kcat/Km 增加了 418%。工程化的 E105R/S264 F 在未来低分子量肝素的商业化生产方面具有巨大的潜力。
更新日期:2020-06-01
down
wechat
bug