当前位置: X-MOL 学术J. Biomater. Sci. Polym. Ed. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancement of hydrophilicity, biocompatibility and biodegradability of poly(ε-caprolactone) electrospun nanofiber scaffolds using poly(ethylene glycol) and poly(L-lactide-co-ε-caprolactone-co-glycolide) as additives for soft tissue engineering.
Journal of Biomaterials Science, Polymer Edition ( IF 3.6 ) Pub Date : 2020-06-07 , DOI: 10.1080/09205063.2020.1769799
Gajanan Kashinathrao Arbade 1, 2 , Juhi Srivastava 2 , Vidisha Tripathi 2 , Nibedita Lenka 2 , T Umasankar Patro 1
Affiliation  

In this study, poly(ε-caprolactone) (PCL) has been blended with a more hydrophilic poly(ethylene glycol) (PEG) and with a biocompatible block-co-polymer: poly(L-lactide-co-ε-caprolactone-co-glycolide) (PLCG) in order to improve hydrophilicity, biocompatibility and biodegradability of PCL. PCL and the blend solutions were subjected to electrospinning to produce nanofiber scaffolds by the addition of only 1 wt% of PEG and PLCG either singly or in combination in PCL to retain the mechanical properties of the scaffolds. PCL-PEG-PLCG ternary and two binary (PCL-PEG and PCL-PLCG) blend nanofiber scaffolds have been prepared for comparison. The resulting nanofibers showed a smooth and flaw-free surface and the diameter of the nanofibers displayed a normal distribution. The PCL-PEG nanofiber scaffold showed improved hydrophilicity [water contact angle (WCA) ∼84°] over pristine PCL (WCA ∼127°); while PCL-PLCG and PCL-PEG-PLCG scaffolds exhibited absolute wetting by water, likely due to high porosity. In vitro biocompatibility studies using gingival mesenchymal stem cells (gMSCs) suggested that, both the PCL and the blend scaffolds were biocompatible supporting cell-viability and growth of gMSCs following their seeding on these scaffolds. Biodegradation studies in phosphate buffer solution showed that the addition of PEG and PLCG in PCL increased the weight loss of scaffolds with time, indicating higher extent of biodegradation in the blend scaffolds and the weight loss followed the power law curve with time.



中文翻译:

使用聚(乙二醇)和聚(L-丙交酯-共-ε-己内酯-共-乙交酯)作为软组织工程添加剂,增强聚(ε-己内酯)电纺纳米纤维支架的亲水性、生物相容性和生物降解性。

在这项研究中,聚(ε-己内酯)(PCL)与更亲水的聚(乙二醇)(PEG)和生物相容性嵌段共聚物共混:聚(L-丙交酯-co-ε-己内酯- co-glycolide) (PLCG) 以提高 PCL 的亲水性、生物相容性和生物降解性。通过在 PCL 中单独或组合添加仅 1 wt% 的 PEG 和 PLCG 以保持支架的机械性能,对 PCL 和共混溶液进行静电纺丝以生产纳米纤维支架。PCL-PEG-PLCG 三元和两种二元(PCL-PEG 和 PCL-PLCG)共混纳米纤维支架已被制备用于比较。所得纳米纤维表面光滑无瑕疵,纳米纤维的直径呈正态分布。与原始 PCL (WCA ∼127°) 相比,PCL-PEG 纳米纤维支架表现出更高的亲水性 [水接触角 (WCA) ∼84°];而 PCL-PLCG 和 PCL-PEG-PLCG 支架表现出绝对的水润湿性,这可能是由于高孔隙率。使用牙龈间充质干细胞 (gMSCs) 进行的体外生物相容性研究表明,PCL 和混合支架均具有生物相容性,支持 gMSCs 在这些支架上接种后的细胞活力和生长。在磷酸盐缓冲溶液中的生物降解研究表明,在 PCL 中添加 PEG 和 PLCG 会随着时间的推移增加支架的重量损失,表明混合支架的生物降解程度更高,并且重量损失随时间遵循幂律曲线。

更新日期:2020-06-07
down
wechat
bug