当前位置: X-MOL 学术Nanoscale Horiz. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Piezochromic luminescence in all-inorganic core-shell InP/ZnS nanocrystals via pressure-modulated strain engineering.
Nanoscale Horizons ( IF 8.0 ) Pub Date : 2020-05-21 , DOI: 10.1039/d0nh00145g
Hao Liu 1 , Xiaohui Zhao , Xinyi Yang , Yixuan Wang , Min Wu , Jutao Jiang , Guorong Wu , Kaijun Yuan , Laizhi Sui , Bo Zou
Affiliation  

Piezochromic materials alter their photoluminescent (PL) colors in response to the action of external force. Such materials have attracted much attention owing to their promising applications in pressure-sensing, optoelectronic memory and anticounterfeiting. However, almost all the reported piezochromic materials were limited to the organic matters or compounds containing organic components. Here we present piezochromic materials and pressure-induced optical response based on all-inorganic core/shell InP/ZnS nanocrystals (NCs). The InP/ZnS NCs exhibit noticeable PL color changes, shifting from orange (2.08 eV) to green (2.25 eV), with the PL intensity showing slight enhancement below an applied pressure of 2.5 GPa. Further compressing to fluorescence quenching produces an ultrabroad energy tenability range up to 400 meV. Structural and time-resolved PL lifetime studies, together with first-principle calculations, reveal the weakening of strain-induced defect states in the low pressure regime, which contributes to effective excition recombination, thus ensuring high fluorescence emission of InP/ZnS NCs. This work provides a promising strategy to prepare piezochromic materials of all-inorganic semiconductors, thereby greatly increasing the choice of materials for new applications.

中文翻译:

通过压力调制应变工程在全无机核壳InP / ZnS纳米晶体中进行压致变色发光。

压致变色材料响应于外力作用而改变其光致发光(PL)颜色。这类材料因其在压力传感,光电存储和防伪中的应用前景而备受关注。但是,几乎所有报道的压致变色材料都限于有机物或含有有机成分的化合物。在这里,我们介绍基于全无机核/壳InP / ZnS纳米晶体(NCs)的压致变色材料和压力诱导的光学响应。InP / ZnS NCs显示出显着的PL颜色变化,从橙色(2.08 eV)变为绿色(2.25 eV),并且PL强度在施加的2.5 GPa以下的压力下略有增强。进一步压缩至荧光猝灭可产生高达400 meV的超宽能范围。结构和时间分辨的PL寿命研究,以及第一性原理计算,揭示了在低压状态下应变诱导的缺陷状态的减弱,这有助于有效的重组复合,从而确保了InP / ZnS NCs的高荧光发射。这项工作为制备全无机半导体的压致变色材料提供了一种有希望的策略,从而大大增加了新应用材料的选择。
更新日期:2020-07-27
down
wechat
bug