当前位置: X-MOL 学术Environ. Sci.: Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Emerging investigator series: first-principles and thermodynamics comparison of compositionally-tuned delafossites: cation release from the (001) surface of complex metal oxides
Environmental Science: Nano ( IF 5.8 ) Pub Date : 2020-05-21 , DOI: 10.1039/c9en01304k
Joseph W. Bennett 1, 2, 3, 4 , Diamond T. Jones 1, 2, 3, 4 , Blake G. Hudson 1, 2, 3, 4 , Joshua Melendez-Rivera 1, 4, 5, 6 , Robert J. Hamers 1, 4, 7, 8 , Sara E. Mason 1, 2, 3, 4
Affiliation  

Nanoscale complex metal oxides have transformed how technology is used around the world. A ubiquitous example is the class of electroreactive cathodes used in Li-ion batteries, found in portable electronics and electric cars. Lack of recycling infrastructure and financial drivers contribute to improper disposal, and ultimately, introduction of these materials into the environment. Outside of sealed operational conditions, it has been demonstrated that complex metal oxides can transform in the environment, and cause negative biological impact through leaching of cations into aqueous phases. Using a combined DFT and thermodynamics methodology, insights into the mechanism and driving forces of cation release can be studied at the molecular-level. Here, we describe design principles that can be drawn from previous collaborative research on complex metal oxide dissolution of the Li(NiyMnzCo1−yz)O2 family of materials, and go on to posit ternary complex metal oxides in the delafossite structure type with controlled release behavior. Using equistoichiometric formulations in the delfossite structure, we use DFT and thermodynamics to model cation release. The release trends are discussed in terms of lattice stability, solution chemistry/solubility limits, and electronic/magnetic properties. Intercalation voltages are calculated and discussed as a predictive metric for potential functionality of the model materials.

中文翻译:

新兴研究者系列:组成调整的铜铁矿的第一性原理和热力学比较:复杂金属氧化物从(001)表面释放的阳离子

纳米级复杂金属氧化物改变了世界范围内技术的使用方式。一个普遍存在的例子是便携式电子产品和电动汽车中用于锂离子电池的电反应性阴极。缺乏可循环利用的基础设施和财务驱动因素会导致不当处置,最终导致将这些材料引入环境。在密封的操作条件之外,已证明复杂的金属氧化物可在环境中转化,并通过将阳离子浸出到水相中而引起负面的生物影响。使用DFT和热力学相结合的方法,可以在分子水平上研究阳离子释放的机理和驱动力。这里,y Mn z Co 1− yz)O 2族材料,然后以具有控制释放行为的铜铁矿结构类型沉积三元复合金属氧化物。在锂磷灰石结构中使用等化学计量公式,我们使用DFT和热力学对阳离子释放进行建模。根据晶格稳定性,溶液化学性质/溶解度限值和电子/磁性性质讨论了释放趋势。计算插入电压,并将其作为模型材料潜在功能的预测指标进行讨论。
更新日期:2020-06-18
down
wechat
bug