当前位置: X-MOL 学术Pattern Recogn. Lett. › 论文详情
Pseudo Distribution on Unseen Classes for Generalized Zero Shot Learning
Pattern Recognition Letters ( IF 2.810 ) Pub Date : 2020-05-21 , DOI: 10.1016/j.patrec.2020.05.021
Haofeng Zhang; Jingren Liu; Yazhou Yao; Yang Long

Although Zero Shot Learning (ZSL) has attracted more and more attention due to its powerful ability of recognizing new objects without retraining, it has a serious drawback that it only focuses on unseen classes during prediction. To solve this issue, Generalized ZSL (GZSL) extends the search range to both seen and unseen classes, which makes it a more realistic and challenging task. Conventional methods on GZSL often suffer from the domain shift problem on seen classes because they have only seen data for training. Deep Calibration Network (DCN) tries to minimize the entropy of assigning seen data to unseen classes to balance the training on both seen and unseen classes. However, there are still two problems for DCN, one is the hubness problem and another is the lack of training guidance. In this paper, to solve the two problems, we propose a novel method called PSeudo Distribution (PSD), which exploits the attribute similarity between seen classes and unseen classes as the training guidance to assign the seen data to unseen classes. In addition, the attribute similarity is also compressed to one-hot vector to further encourage the certainty of the model. Besides, the visual space is utilized as the embedding space, which can well settle the hubness problem. Extensive experiments are conducted on four popular datasets, and the results show the superiority of the proposed method.
更新日期:2020-05-21

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
伊利诺伊大学香槟分校
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug