当前位置: X-MOL 学术Adv. Space Res. › 论文详情
Steering control law for double-gimbal scissored-pair CMG
Advances in Space Research ( IF 1.746 ) Pub Date : 2020-05-21 , DOI: 10.1016/j.asr.2020.05.007
Hirohisa Kojima; Reiji Nakamura; Sajjad Keshtkar

Because control moment gyroscopes (CMGs) can generate a large torque compared to reaction wheels, they are used as actuators for attitude control of large spacecraft. However, when the number of Single-Gimbal CMG (SGCMG) units is five or less, there can be internal singularities that cannot generate torque around the desired direction. To construct a system that has no internal singularities, six or more SGCMGs are required, because an orthogonally arrayed, three scissored-pair CMG system has no internal singularities. Because CMG singularities are disruptive for attitude control, a great deal of effort has been devoted to overcoming the CMG singularity problem; the various designs include Variable-Speed CMGs (VSCMGs), Double-Gimbal CMGs (DGCMGs), and Double-Gimbal Variable-Speed CMGs (DGVSCMGs). However, these designs still have problems, such as slow response to torque generation commands about the wheel axis in VSCMGs and DGVSCMGs, and difficulty in precise attitude tracking when perturbation torque is generated to avoid singularities. To overcome the problems of the traditional CMG configurations, this paper proposes a new CMG system configuration that we call the Double-Gimbal Scissored-pair CMG (DGSPCMG) system. Because the DGSPCMG system is a hybrid system combining a Scissored-Pair CMG and a DGCMG, the DGSPCMG system does not have internal singularities except at the origin and along the x-axis. Moreover, this system can recover from an internal singularity by null motion only, and from outer singularities (saturation singularities) by steering the scissored-pair gimbals only. Thus, the generation of perturbation torque is unnecessary for recovering from singularities, and a precise attitude tracking maneuver can be more easily achieved. This paper presents a conceptual design of a DGSPCMG system and describes a steering control law for the proposed system. Furthermore, the validity of the proposed steering control law is demonstrated through numerical simulations and results of comparison experiments are shown to demonstrate the advantage of the DGSPCMG over a VSCMG.
更新日期:2020-05-21

 

全部期刊列表>>
Springer化学材料学
骄傲月
如何通过Nature平台传播科研成果
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
南开大学
朱守非
廖良生
郭东升
汪铭
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug