当前位置: X-MOL 学术Front. Inform. Technol. Electron. Eng. › 论文详情
Proximal policy optimization with an integral compensator for quadrotor control
Frontiers of Information Technology & Electronic Engineering ( IF 1.033 ) Pub Date : 2020-05-21 , DOI: 10.1631/fitee.1900641
Huan Hu, Qing-ling Wang

We use the advanced proximal policy optimization (PPO) reinforcement learning algorithm to optimize the stochastic control strategy to achieve speed control of the “model-free” quadrotor. The model is controlled by four learned neural networks, which directly map the system states to control commands in an end-to-end style. By introducing an integral compensator into the actor-critic framework, the speed tracking accuracy and robustness have been greatly enhanced. In addition, a two-phase learning scheme which includes both offline- and online-learning is developed for practical use. A model with strong generalization ability is learned in the offline phase. Then, the flight policy of the model is continuously optimized in the online learning phase. Finally, the performances of our proposed algorithm are compared with those of the traditional PID algorithm.
更新日期:2020-05-21

 

全部期刊列表>>
Springer化学材料学
骄傲月
如何通过Nature平台传播科研成果
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
南开大学
朱守非
廖良生
郭东升
汪铭
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug