当前位置: X-MOL 学术Nanoscale Horiz. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Inter-overlapped MoS2/C composites with large-interlayer-spacing for high-performance sodium-ion batteries.
Nanoscale Horizons ( IF 8.0 ) Pub Date : 2020-05-20 , DOI: 10.1039/d0nh00152j
Yinghui Wang 1 , Ya Yang 1 , Deyang Zhang 1 , Yangbo Wang 1 , Xiaoke Luo 2 , Xianming Liu 3 , Jang-Kyo Kim 4 , Yongsong Luo 5
Affiliation  

As a two-dimensional layered material with a structure analogous to that of graphene, molybdenum disulfide (MoS2) holds great promise in sodium-ion batteries (SIBs). However, recent research findings have revealed some disadvantages in two-dimensional (2D) materials such as poor interlayer conductivity and structural instability, resulting in poor rate performance and short cycle life for SIBs. Herein, we designed MoS2 nanoflowers with an ultra-wide spacing interlayer (W-MoS2/C) anchored on special double carbon tubes to construct three-dimensional (3D) nanostructures. When tested as an anode material in a SIB, the as-prepared CNT@NCT@W-MoS2/C sample achieves high capacities (530 and 230 mA h g−1 at current densities of 0.1 and 2 A g−1, respectively). Density functional theory (DFT) calculations demonstrate that the ultra-wide spacing MoS2/C structure is beneficial for the chemical adsorption of sodium ions and facilitates redox reactions. The wide interlayer spacing and the presence of an intermediate carbon layer provide a rapid diffusion channel for ions and offer a free space for volume expansion of the electrode material.

中文翻译:

相互重叠的MoS2 / C复合材料,具有大的中间层间距,适用于高性能钠离子电池。

作为具有类似于石墨烯结构的二维分层材料,二硫化钼(MoS 2)在钠离子电池(SIB)中具有广阔的前景。但是,最近的研究发现揭示了二维(2D)材料的一些缺点,例如较差的层间电导率和结构不稳定性,导致SIB的较差的速率性能和较短的循环寿命。在这里,我们设计了具有超宽间隔夹层(W-MoS 2 / C)的MoS 2纳米花,将其固定在特殊的双碳管上以构建三维(3D)纳米结构。当在SIB中作为阳极材料进行测试时,所制备的CNT @ NCT @ W-MoS 2 / C样品可实现高容量(530和230 mA hg -1在电流密度分别为0.1和2 A g -1时)。密度泛函理论(DFT)计算表明,超宽间距MoS 2 / C结构有利于钠离子的化学吸附并促进氧化还原反应。较大的层间间距和中间碳层的存在为离子提供了快速的扩散通道,并为电极材料的体积膨胀提供了自由空间。
更新日期:2020-06-29
down
wechat
bug