当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution.
Nature Communications ( IF 14.7 ) Pub Date : 2020-05-20 , DOI: 10.1038/s41467-020-16237-1
Fabio Dionigi 1 , Zhenhua Zeng 2 , Ilya Sinev 3, 4 , Thomas Merzdorf 1 , Siddharth Deshpande 2 , Miguel Bernal Lopez 3, 4 , Sebastian Kunze 3, 4 , Ioannis Zegkinoglou 3, 4 , Hannes Sarodnik 1 , Dingxin Fan 2 , Arno Bergmann 1, 4 , Jakub Drnec 5 , Jorge Ferreira de Araujo 1 , Manuel Gliech 1 , Detre Teschner 6, 7 , Jing Zhu 8 , Wei-Xue Li 8 , Jeffrey Greeley 2 , Beatriz Roldan Cuenya 4 , Peter Strasser 1
Affiliation  

NiFe and CoFe (MFe) layered double hydroxides (LDHs) are among the most active electrocatalysts for the alkaline oxygen evolution reaction (OER). Herein, we combine electrochemical measurements, operando X-ray scattering and absorption spectroscopy, and density functional theory (DFT) calculations to elucidate the catalytically active phase, reaction center and the OER mechanism. We provide the first direct atomic-scale evidence that, under applied anodic potentials, MFe LDHs oxidize from as-prepared α-phases to activated γ-phases. The OER-active γ-phases are characterized by about 8% contraction of the lattice spacing and switching of the intercalated ions. DFT calculations reveal that the OER proceeds via a Mars van Krevelen mechanism. The flexible electronic structure of the surface Fe sites, and their synergy with nearest-neighbor M sites through formation of O-bridged Fe-M reaction centers, stabilize OER intermediates that are unfavorable on pure M-M centers and single Fe sites, fundamentally accounting for the high catalytic activity of MFe LDHs.

中文翻译:

NiFe和CoFe层状双氢氧化物在析氧过程中的原位结构和催化机理。

NiFe和CoFe(MFe)层状双氢氧化物(LDHs)是用于碱性氧释放反应(OER)的最具活性的电催化剂。在这里,我们结合了电化学测量,操作X射线散射和吸收光谱以及密度泛函理论(DFT)计算来阐明催化活性相,反应中心和OER机理。我们提供了第一个直接的原子级证据,即在施加的阳极电势下,MFe LDHs从制备的α相氧化为活化的γ相。OER活性γ相的特征是晶格间距收缩约8%,并且插层离子发生转换。DFT计算显示,OER通过Mars van Krevelen机制进行。表面铁位点的柔性电子结构,
更新日期:2020-05-20
down
wechat
bug