当前位置: X-MOL 学术J. Adhes. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental study of the CTBN effect on mechanical properties and mode I and II fracture toughness of a new epoxy resin
Journal of Adhesion Science and Technology ( IF 2.3 ) Pub Date : 2020-05-20 , DOI: 10.1080/01694243.2020.1763540
Alireza Dadian 1 , Saeed Rahnama 1 , Abbas Zolfaghari 2
Affiliation  

Abstract Due to the high strength and adhesiveness of epoxies, these materials are widely used in various industries such as aerospace. But because of their inherent brittleness and poor fracture toughness, they do not have enough resistance against crack propagation. In adhesive joints, maximum stresses near the ends of the overlaps resulted in premature failure of the joints. In this study, for toughening the epoxy, carboxyl-terminated butadiene acrylonitrile (CTBN) as a liquid rubber was used. Blends of a new epoxy resin (R510) and the CTBN in several weight fractions were produced and characterized. In this article, four tests have been done to find the mechanical properties and mode I and II fracture toughness of the adhesives. The tensile and shear tests were performed to achieve Young’s modulus (E), maximum tensile stress (σf), shear modulus (G), maximum shear stress (τf) and Poisson’s ratio (ν) of the adhesives. Also, the double-cantilever beam (DCB) and end-notched flexure (ENF) tests were used to obtain the mode I fracture toughness (GIc) and mode II fracture toughness (GIIc), respectively. The results from each of the DCB and the ENF tests were analyzed by three different methods and compared. Results showed that by adding CTBN to epoxy, E, G, ν, σf and τf are reduced, but toughness, the resistance to crack growth and as a result, the GIc and GIIc increased efficiently. These data can be used to predict the adhesive joint strength and simulating the damage initiation and its evolution until failure with cohesive zone modeling (CZM).

中文翻译:

CTBN对新型环氧树脂力学性能及I型和II型断裂韧性影响的实验研究

摘要 由于环氧树脂的高强度和粘合性,这些材料被广泛应用于航空航天等各个行业。但由于它们固有的脆性和较差的断裂韧性,它们没有足够的抗裂纹扩展能力。在粘合接头中,重叠端附近的最大应力会导致接头过早失效。在这项研究中,为了增韧环氧树脂,使用了端羧基丁二烯丙烯腈 (CTBN) 作为液体橡胶。生产并表征了几种重量分数的新型环氧树脂 (R510) 和 CTBN 的共混物。在这篇文章中,进行了四项测试来确定粘合剂的机械性能和 I 型和 II 型断裂韧性。进行拉伸和剪切试验以获得杨氏模量 (E)、最大拉伸应力 (σf)、粘合剂的剪切模量 (G)、最大剪切应力 (τf) 和泊松比 (ν)。此外,双悬臂梁(DCB)和端部缺口弯曲(ENF)测试分别用于获得I型断裂韧性(GIc)和II型断裂韧性(GIIc)。DCB 和 ENF 测试的结果分别通过三种不同的方法进行分析和比较。结果表明,通过在环氧树脂中加入 CTBN,E、G、ν、σf 和 τf 降低,但韧性、抗裂纹扩展能力以及 Glc 和 GIIc 有效增加。这些数据可用于预测粘合接头强度,并通过内聚区建模 (CZM) 模拟损伤开始及其演变直至失效。双悬臂梁(DCB)和端部缺口弯曲(ENF)测试分别用于获得I型断裂韧性(GIc)和II型断裂韧性(GIIc)。DCB 和 ENF 测试的结果分别通过三种不同的方法进行分析和比较。结果表明,通过在环氧树脂中加入 CTBN,E、G、ν、σf 和 τf 降低,但韧性、抗裂纹扩展能力以及 Glc 和 GIIc 有效增加。这些数据可用于预测粘合接头强度,并通过内聚区建模 (CZM) 模拟损伤开始及其演变直至失效。双悬臂梁(DCB)和端部缺口弯曲(ENF)测试分别用于获得I型断裂韧性(GIc)和II型断裂韧性(GIIc)。DCB 和 ENF 测试的结果分别通过三种不同的方法进行分析和比较。结果表明,通过在环氧树脂中加入 CTBN,E、G、ν、σf 和 τf 降低,但韧性、抗裂纹扩展能力以及 Glc 和 GIIc 有效增加。这些数据可用于预测粘合接头强度,并通过内聚区建模 (CZM) 模拟损伤开始及其演变直至失效。结果表明,通过在环氧树脂中加入 CTBN,E、G、ν、σf 和 τf 降低,但韧性、抗裂纹扩展能力以及 Glc 和 GIIc 有效增加。这些数据可用于预测粘合接头强度,并通过内聚区建模 (CZM) 模拟损伤开始及其演变直至失效。结果表明,通过在环氧树脂中加入 CTBN,E、G、ν、σf 和 τf 降低,但韧性、抗裂纹扩展能力以及 Glc 和 GIIc 有效增加。这些数据可用于预测粘合接头强度,并通过内聚区建模 (CZM) 模拟损伤开始及其演变直至失效。
更新日期:2020-05-20
down
wechat
bug