当前位置: X-MOL 学术Phys. Status Solidi B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
First‐Principles Investigation of Antimonene Nanoribbons for Sensing Toxic NO2 Gas
Physica Status Solidi (B) - Basic Solid State Physics ( IF 1.5 ) Pub Date : 2020-05-20 , DOI: 10.1002/pssb.202000034
Pankaj Srivastava 1 , Abhishek 1 , Varun Sharma 2 , Neeraj K. Jaiswal 3
Affiliation  

Herein, based on density functional theory (DFT) calculations, the antimonene nanoribbons (SbNRs) are systematically investigated to gauge their potential for plausible NO2 sensors. The outcomes suggest that the adsorbed NO2 molecule forms a strong chemical bond with zigzag SbNR (ZSbNR) and armchair SbNR (ASbNR). Also, it is unveiled that each configuration of NO2 adsorption on SbNR is energetically favorable, with O2NZSbNRH and O2NHASbNRHO2N considered as most stable adsorption configuration. NO2 molecule acts as a strong charge acceptor and exhibits reasonable adsorption energy. The electronic structure calculations reflect the transformation of narrow to wide bandgap semiconductors upon adsorption. The obtained transport properties feature the profound change in current magnitude in both ZSbNR and ASbNR after NO2 adsorption. Present findings indicate that ZSbNR and ASbNR are highly selective to detect the presence of NO2 molecules against atmospheric gases.

中文翻译:

用于检测有毒NO2气体的锑基纳米带的第一性原理研究

在本文中,基于密度泛函理论(DFT)计算,系统地研究了锑烯纳米带(SbNRs),以评估其对合理的NO 2传感器的潜力。结果表明,吸附的NO 2分子与之字形SbNR(ZSbNR)和扶手椅SbNR(ASbNR)形成强化学键。另外,还公布了该NO的每个配置2上SBNR吸附是积极有利的,被O 2 Ñ ZSbNR 氢,氧2 Ñ ħ ASbNR ħ ö 2 Ñ视为最稳定的吸附结构。NO 2分子充当强电荷受体并表现出合理的吸附能。电子结构计算反映了吸附后窄带隙半导体向宽带隙半导体的转变。吸附NO 2后,ZSbNR和ASbNR的电流强度发生了显着变化。目前的发现表明,ZSbNR和ASbNR具有很高的选择性,可检测存在于大气中的NO 2分子。
更新日期:2020-05-20
down
wechat
bug