当前位置: X-MOL 学术J. Phys. Chem. Solids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fundamental studies of hafnia-hematite nanoparticles
Journal of Physics and Chemistry of Solids ( IF 4.3 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.jpcs.2020.109567
Louise Ferris , Mark Allwes , Lucian Diamandescu , Alice Perrin , Michael McHenry , Monica Sorescu

Abstract xHfO2-(1-x)α-Fe2O3 (x = 0.1, 0.3, 0.5 and 0.7) nanoparticles system was obtained using mechanochemical activation by high energy ball milling for time periods ranging from 0 to 12 h. X-ray diffraction patterns revealed the presence of two phases, a hafnium-doped hematite and an iron-doped hafnia, which competed with each other to form a solid solution. The trend observed in the lattice parameters using Rietveld refinement was consistent with differences in ionic radii between Hf and Fe. Crystallite sizes for both hematite and hafnia were analyzed as function of milling time using the Scherrer method and found to decrease down to ~15 nm for all molar concentrations used. Mossbauer spectroscopy revealed the presence of 1–5 sextets corresponding to different numbers of Hf nearest neighbors of Fe in the hematite structure. The different hyperfine magnetic fields could be resolved in the model of local atomic environment. Substitutions of Fe in hafnia gave rise to a nonmagnetic phase represented by a quadrupole split doublet, whose abundance was found to increase with ball milling time. Hysteresis loops recorded at 5 K showed that the Hf-doped system does not saturate in an applied magnetic field of 5 T. The Morin transition was observed during zero-field-cooling-field cooling (ZFC-FC) in an external magnetic field of 200 Oe. Differential scanning calorimetry with thermal gravimetric analysis (DSC-TGA) evidenced an exothermic peak for the starting oxides and an endothermic peak for the solid solution.

中文翻译:

铪-赤铁矿纳米粒子的基础研究

摘要 xHfO2-(1-x)α-Fe2O3 (x = 0.1, 0.3, 0.5 和 0.7) 纳米粒子系统是通过机械化学活化通过高能球磨获得 0 到 12 小时的时间段。X 射线衍射图显示存在两相,掺铪的赤铁矿和掺铁的铪,它们相互竞争形成固溶体。使用 Rietveld 细化在晶格参数中观察到的趋势与 Hf 和 Fe 之间的离子半径差异一致。使用 Scherrer 方法将赤铁矿和二氧化铪的微晶尺寸作为研磨时间的函数进行分析,发现对于所用的所有摩尔浓度,微晶尺寸降低至约 15 nm。Mossbauer 光谱显示存在 1-5 个六重奏,对应于赤铁矿结构中不同数量的 Fe 的 Hf 最近邻。不同的超精细磁场可以在局部原子环境模型中解决。铪中 Fe 的取代产生了由四极分裂双峰表示的非磁性相,发现其丰度随着球磨时间的增加而增加。在 5 K 记录的磁滞回线表明,掺 Hf 系统不会在 5 T 的外加磁场中饱和。在外部磁场中的零场冷却场冷却 (ZFC-FC) 期间观察到莫林转变200 欧。带有热重分析 (DSC-TGA) 的差示扫描量热法证实了起始氧化物的放热峰和固溶体的吸热峰。铪中 Fe 的取代产生了由四极分裂双峰表示的非磁性相,发现其丰度随着球磨时间的增加而增加。在 5 K 记录的磁滞回线表明,掺 Hf 系统不会在 5 T 的外加磁场中饱和。在外部磁场中的零场冷却场冷却 (ZFC-FC) 期间观察到莫林转变200 欧。带有热重分析 (DSC-TGA) 的差示扫描量热法证实了起始氧化物的放热峰和固溶体的吸热峰。铪中 Fe 的取代产生了由四极分裂双峰表示的非磁性相,发现其丰度随着球磨时间的增加而增加。在 5 K 记录的磁滞回线表明,Hf 掺杂系统在 5 T 的外加磁场中不会饱和。 在外部磁场中的零场冷却场冷却 (ZFC-FC) 期间观察到莫林转变200 欧。带有热重分析 (DSC-TGA) 的差示扫描量热法证实了起始氧化物的放热峰和固溶体的吸热峰。在 200 Oe 的外部磁场中的零场冷却场冷却 (ZFC-FC) 期间观察到莫林转变。带有热重分析 (DSC-TGA) 的差示扫描量热法证实了起始氧化物的放热峰和固溶体的吸热峰。在 200 Oe 的外部磁场中的零场冷却场冷却 (ZFC-FC) 期间观察到莫林转变。带有热重分析 (DSC-TGA) 的差示扫描量热法证实了起始氧化物的放热峰和固溶体的吸热峰。
更新日期:2020-10-01
down
wechat
bug