当前位置: X-MOL 学术J. Biotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Regulating the biosynthesis of pyridoxal 5'-phosphate with riboswitch to enhance L-DOPA production by Escherichia coli whole-cell biotransformation.
Journal of Biotechnology ( IF 4.1 ) Pub Date : 2020-05-20 , DOI: 10.1016/j.jbiotec.2020.05.009
Hongmei Han 1 , Bingbing Xu 1 , Weizhu Zeng 2 , Jingwen Zhou 3
Affiliation  

Pyridoxal 5′-phosphate (PLP) is an essential cofactor that participates in ∼4% enzymatic activities cataloged by the Enzyme Commission. The intracellular level of PLP is usually lower than that demanded in industrial catalysis. To realize the self-supply of PLP cofactor in whole-cell biotransformation, the de novo ribose 5-phosphate (R5P)-dependent PLP synthesis pathway was constructed. The pdxST genes from Bacillus subtilis 168 were introduced into the tyrosine phenol-lyase (TPL)-overexpressing Escherichia coli BL21(DE3) strain. TPL and PdxST were co-expressed with a double-promoter or a compatible double-plasmid system. The 3,4-dihydroxyphenylacetate-L-alanine (L-DOPA) titer did not increase with the increase in the intracellular PLP concentration in these strains with TPL and PdxST co-expression. Therefore, it is necessary to optimize the intracellular PLP metabolism level so as to achieve a higher L-DOPA titer and avoid the formation of L-DOPA–PLP cyclic adducts. The thi riboswitch binds to PLP and forms a complex such that the ribosome cannot have access to the Shine-Dalgarno (SD) sequence. Therefore, this metabolite-sensing regulation system was applied to regulate the translation of pdxST mRNA. Riboswitch was introduced into pET–TPL–pdxST-2 to downregulate the expression of PdxST and biosynthesis of PLP at the translation level by sequestering the ribosome-binding site. As a result, the titer and productivity of L-DOPA using the strain BL21–TPLST–Ribo1 improved to 69.8 g/L and 13.96 g/L/h, respectively, with a catechol conversion of 95.9% and intracellular PLP accumulation of 24.8 μM.



中文翻译:

用核糖开关调节吡咯醛5'-磷酸的生物合成,以增强大肠杆菌全细胞生物转化产生的L-DOPA。

吡rid醛5'-磷酸(PLP)是必不可少的辅助因子,参与酶委员会规定的约4%的酶促活性。PLP的细胞内水平通常低于工业催化所需的水平。为了实现全细胞生物转化中PLP辅因子的自给,构建了从头核糖5磷酸(R5P)依赖的PLP合成途径。来自枯草芽孢杆菌168的pdxST基因被引入到酪氨酸酚裂解酶(TPL)过表达的大肠杆菌中BL21(DE3)菌株。TPL和PdxST与双启动子或兼容的双质粒系统共表达。在具有TPL和PdxST共表达的这些菌株中,3,4-二羟基苯乙酸酯-L-丙氨酸(L-DOPA)滴度没有随细胞内PLP浓度的增加而增加。因此,有必要优化细胞内PLP代谢水平,以获得更高的L-DOPA滴度,并避免形成L-DOPA-PLP环状加合物。所述THI核糖开关结合于PLP和形式的复合物,使得核糖体不能访问的Shine-Dalgarno(SD)序列。因此,该代谢物传感调控系统被用于调控pdxST的翻译mRNA。Riboswitch被引入pET–TPL–pdxST-2中,以通过隔离核糖体结合位点在翻译水平上下调PdxST的表达和PLP的生物合成。结果,使用BL21–TPLST–Ribo1菌株的L-DOPA的效价和生产率分别提高至69.8 g / L和13.96 g / L / h,儿茶酚转化率为95.9%,细胞内PLP积累为24.8μM 。

更新日期:2020-07-09
down
wechat
bug