当前位置: X-MOL 学术Nanoscale Res. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-Performance AlGaN Double Channel HEMTs with Improved Drain Current Density and High Breakdown Voltage.
Nanoscale Research Letters ( IF 5.418 ) Pub Date : 2020-05-20 , DOI: 10.1186/s11671-020-03345-6
Yachao Zhang 1 , Yifan Li 1 , Jia Wang 2 , Yiming Shen 2 , Lin Du 3 , Yao Li 4 , Zhizhe Wang 5 , Shengrui Xu 1 , Jincheng Zhang 1 , Yue Hao 1
Affiliation  

In this work, AlGaN double channel heterostructure is proposed and grown by metal organic chemical vapor deposition (MOCVD), and high-performance AlGaN double channel high electron mobility transistors (HEMTs) are fabricated and investigated. The implementation of double channel feature effectively improves the transport properties of AlGaN channel heterostructures. On one hand, the total two dimensional electron gas (2DEG) density is promoted due to the double potential wells along the vertical direction and the enhanced carrier confinement. On the other hand, the average 2DEG density in each channel is reduced, and the mobility is elevated resulted from the suppression of carrier-carrier scattering effect. As a result, the maximum drain current density (Imax) of AlGaN double channel HEMTs reaches 473 mA/mm with gate voltage of 0 V. Moreover, the superior breakdown performance of the AlGaN double channel HEMTs is also demonstrated. These results not only show the great application potential of AlGaN double channel HEMTs in microwave power electronics but also develop a new thinking for the studies of group III nitride-based electronic devices.

中文翻译:

具有改进的漏极电流密度和高击穿电压的高性能AlGaN双通道HEMT。

在这项工作中,提出并通过金属有机化学气相沉积(MOCVD)来生长AlGaN双沟道异质结构,并制造和研究了高性能AlGaN双沟道高电子迁移率晶体管(HEMT)。双沟道特征的实施有效地改善了AlGaN沟道异质结构的传输性能。一方面,由于沿垂直方向的双势阱和增强的载流子限制,总的二维电子气(2DEG)密度得到了提高。另一方面,由于抑制了载流子-散射效应,每个通道中的平均2DEG密度降低,迁移率提高。结果,在栅极电压为0 V的情况下,AlGaN双通道HEMT的最大漏极电流密度(Imax)达到473 mA / mm。还展示了AlGaN双通道HEMT的出色击穿性能。这些结果不仅表明了AlGaN双通道HEMT在微波功率电子学中的巨大应用潜力,而且为III族氮化物基电子器件的研究提供了新的思路。
更新日期:2020-05-20
down
wechat
bug