当前位置: X-MOL 学术Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational micromechanical modelling of the material removal process in a carbon fibre composite under single-erodent particle impact
Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology ( IF 1.6 ) Pub Date : 2020-05-19 , DOI: 10.1177/1350650120925576
Ajaz A Deliwala 1 , Chandra S Yerramalli 1
Affiliation  

A multiscale model is developed to understand the material removal process in a unidirectional carbon fibre epoxy composite impacted by a single-erodent particle. The embedded cell approach is used to model the carbon fibre and epoxy at a microscale. The micromodel is embedded centrally in the macroscale lamina of the composite plate. The carbon fibre is considered to be elastic with orthotropic strain limits as the failure criteria. The epoxy matrix is modelled as an elastic--plastic material with multilinear isotropic hardening. The maximum equivalent plastic strain limit is used as the matrix material failure limit. Using this embedded micromechanics model, the role of matrix and the fibre in developing the composite material erosion behaviour has been clearly elucidated. The results from the simulation indicate the change in the matrix erosion behaviour as a function of the fibre volume fraction. For the current thermoset matrix, material erosion response changes from brittle behaviour to ductile behaviour with an increase in fibre volume fraction. The current study has been able to highlight the individual role of matrix and the fibre in developing the semi-ductile erosion response peculiar to a fibre-reinforced composite material.

中文翻译:

单侵蚀粒子冲击下碳纤维复合材料材料去除过程的计算微观力学模型

开发了一个多尺度模型来了解单向碳纤维环氧树脂复合材料中受单个侵蚀颗粒影响的材料去除过程。嵌入式单元方法用于在微观尺度上对碳纤维和环氧树脂进行建模。微观模型嵌入在复合板的宏观层的中央。碳纤维被认为是弹性的,以正交各向异性应变极限为失效准则。环氧树脂基体被建模为具有多重线性各向同性硬化的弹塑性材料。最大等效塑性应变极限用作基体材料失效极限。使用这种嵌入式微观力学模型,已经清楚地阐明了基质和纤维在发展复合材料侵蚀行为中的作用。模拟结果表明基体侵蚀行为的变化是纤维体积分数的函数。对于当前的热固性基体,随着纤维体积分数的增加,材料侵蚀响应从脆性行为变为延性行为。目前的研究已经能够突出基体和纤维在发展纤维增强复合材料特有的半延性侵蚀响应中的个别作用。
更新日期:2020-05-19
down
wechat
bug