当前位置: X-MOL 学术bioRxiv. Syst. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The role of incoherent feedforward circuits in regulating precision of event timing
bioRxiv - Systems Biology Pub Date : 2020-05-19 , DOI: 10.1101/2020.05.17.100420
Supravat Dey , Sherin Kannoly , Pavol Bokes , John J Dennehy , Abhyudai Singh

Triggering of cellular events often relies on the level of a key gene product crossing a critical threshold. Achieving precision in event timing in spite of noisy gene expression facilitates high-fidelity functioning of diverse processes from biomolecular clocks, apoptosis and cellular differentiation. Here we investigate the role of an incoherent feedforward circuit in regulating the time taken by a bacterial virus (bacteriophage lambda) to lyse an infected Escherichia coli cell. Lysis timing is the result of expression and accumulation of a single lambda protein (holin) in the E. coli cell membrane up to a critical threshold level, which triggers the formation of membrane lesions. This easily visualized process provides a simple model system for characterizing event-timing stochasticity in single cells. Intriguingly, lambda's lytic pathway synthesizes two functionally opposite proteins: holin and antiholin from the same mRNA in a 2:1 ratio. Antiholin sequesters holin and inhibits the formation of lethal membrane lesions, thus creating an incoherent feedforward circuit. We develop and analyze a stochastic model for this feedforward circuit that considers correlated bursty expression of holin/antiholin, and their concentrations are diluted from cellular growth. Interestingly, our analysis shows the noise in timing is minimized when both proteins are expressed at an optimal ratio, hence revealing an important regulatory role for antiholin. These results are in agreement with single cell data, where removal of antiholin results in enhanced stochasticity in lysis timing.

中文翻译:

非相干前馈电路在调节事件时序精度中的作用

细胞事件的触发通常取决于关键基因产物的水平超过临界阈值。尽管有嘈杂的基因表达,但在事件计时中仍能达到较高的精度,有助于生物分子钟,细胞凋亡和细胞分化等多种过程的高保真功能。在这里,我们研究了非相干前馈电路在调节细菌病毒(噬菌体λ)裂解感染的大肠杆菌细胞所花费的时间中的作用。裂解时间是在大肠杆菌细胞膜中单个λ蛋白(holin)的表达和积累达到临界阈值水平的结果,从而触发了膜损伤的形成。这种易于可视化的过程提供了一个简单的模型系统,用于表征单个单元中的事件定时随机性。有趣的是,lambda' s裂解途径从同一mRNA中以2:1的比例合成了两种功能相反的蛋白质:霍林和抗霍林。Antiholin螯合holin并抑制致死性膜损伤的形成,从而形成不连贯的前馈回路。我们开发并分析了此前馈电路的随机模型,该模型考虑了相关的holin / antiholin突发表达,并且它们的浓度从细胞生长中被稀释了。有趣的是,我们的分析显示,当两种蛋白均以最佳比例表达时,时间噪声被最小化,从而揭示了抗胆红素的重要调控作用。这些结果与单细胞数据一致,单抗数据的去除导致裂解时间的随机性增强。Antiholin螯合holin并抑制致死性膜损伤的形成,从而产生不连贯的前馈回路。我们开发和分析此前馈电路的随机模型,该模型考虑了相关的holin / antiholin的突发表达,并且它们的浓度从细胞生长中被稀释了。有趣的是,我们的分析表明,当两种蛋白均以最佳比例表达时,时间噪声最小化,从而揭示了抗胆红素的重要调控作用。这些结果与单细胞数据一致,单抗数据的去除导致裂解时间的随机性增强。Antiholin螯合holin并抑制致死性膜损伤的形成,从而产生不连贯的前馈回路。我们开发并分析了这种前馈电路的随机模型,该模型考虑了相关的holin / antiholin突发表达,并且它们的浓度从细胞生长中被稀释了。有趣的是,我们的分析表明,当两种蛋白均以最佳比例表达时,时间噪声最小化,从而揭示了抗胆红素的重要调控作用。这些结果与单细胞数据一致,单抗数据的去除导致裂解时间的随机性增强。我们开发和分析此前馈电路的随机模型,该模型考虑了相关的holin / antiholin的突发表达,并且它们的浓度从细胞生长中被稀释了。有趣的是,我们的分析表明,当两种蛋白均以最佳比例表达时,时间噪声最小化,从而揭示了抗胆红素的重要调控作用。这些结果与单细胞数据一致,单抗数据的去除导致裂解时间的随机性增强。我们开发和分析此前馈电路的随机模型,该模型考虑了相关的holin / antiholin的突发表达,并且它们的浓度从细胞生长中被稀释了。有趣的是,我们的分析表明,当两种蛋白均以最佳比例表达时,时间噪声最小化,从而揭示了抗胆红素的重要调控作用。这些结果与单细胞数据一致,单抗数据的去除导致裂解时间的随机性增强。
更新日期:2020-05-19
down
wechat
bug