当前位置: X-MOL 学术Chem. Eng. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Polymer-surfactant complexes effect on the flow in microchannels: an experimental approach
Chemical Engineering Communications ( IF 2.5 ) Pub Date : 2020-05-19
Fiona W.M Ling, Somaye Heidarinik, Hayder A. Abdulbari

Over the past few decades, experimental investigations have confirmed that it is not possible to enhance the flow in microfluidics channels due to its laminar flow nature. Reducing the scale of the carrying conduit (e.g. a microchannel) will enable the fluid properties, such as the viscosity and surface tension, to dominate and change the flow behavior. Most of the experimental efforts in this field focus on modifying the inner surfaces of the microchannels by controlling its hydrophobicity or hydrophilicity. The effect of active flow enhancement additives on the liquid flow in a microchannel is not addressed previously. The present work investigates the effect of two different types of viscoelastic additives, an anionic polymer (xanthan gum, XG) and a cationic surfactant (benzethonium chloride, BC), and their complexes on flow behavior in a 100 × 100 µm square microchannel. The effects of the additive concentrations and solution flow rates were investigated. The rheological and morphological properties of the solutions were tested using rheometer and cryo Transmission Electron Microscopy (cryo-TEM) techniques. The experimental results showed that the individual additives and their complexes can act as effective flow enhancement agents in a microchannel flow system. A maximum flow enhancement performance of 66% was achieved with the 300 ppm BC and 1000 ppm XG complex. It is believed that the interferences of the soluble additives in the microflow layers will be controlled by the aggregate size, which will result in different drag reduction behaviors.



中文翻译:

聚合物-表面活性剂复合物对微通道流动的影响:一种实验方法

在过去的几十年中,实验研究已经证实,由于其层流特性,不可能提高微流体通道中的流量。减小输送导管(例如,微通道)的尺寸将使流体特性(例如粘度和表面张力)成为主导并改变流动行为。该领域中的大多数实验工作集中在通过控制微通道的疏水性或亲水性来修饰微通道的内表面。活性流动增强添加剂对微通道中液体流动的影响以前没有解决。本工作研究了两种不同类型的粘弹性添加剂(阴离子聚合物(黄原胶,XG)和阳离子表面活性剂(苄索氯铵,BC)的作用,及其在100×100 µm方形微通道中对流动行为的影响。研究了添加剂浓度和溶液流速的影响。使用流变仪和低温透射电子显微镜(cryo-TEM)技术测试溶液的流变学和形态学特性。实验结果表明,单独的添加剂及其配合物可以在微通道流动系统中充当有效的流动增强剂。300 ppm BC和1000 ppm XG配合物可实现66%的最大流量增强性能。据信,微流层中可溶性添加剂的干扰将由聚集体尺寸控制,这将导致不同的减阻性能。研究了添加剂浓度和溶液流速的影响。使用流变仪和低温透射电子显微镜(cryo-TEM)技术测试溶液的流变学和形态学特性。实验结果表明,单独的添加剂及其配合物可以在微通道流动系统中充当有效的流动增强剂。300 ppm BC和1000 ppm XG配合物可实现66%的最大流量增强性能。据信,微流层中可溶性添加剂的干扰将由聚集体尺寸控制,这将导致不同的减阻性能。研究了添加剂浓度和溶液流速的影响。使用流变仪和低温透射电子显微镜(cryo-TEM)技术测试溶液的流变学和形态学特性。实验结果表明,单独的添加剂及其配合物可以在微通道流动系统中充当有效的流动增强剂。300 ppm BC和1000 ppm XG配合物可实现66%的最大流量增强性能。据信,微流层中可溶性添加剂的干扰将由聚集体尺寸控制,这将导致不同的减阻性能。使用流变仪和低温透射电子显微镜(cryo-TEM)技术测试溶液的流变学和形态学特性。实验结果表明,单独的添加剂及其配合物可以在微通道流动系统中充当有效的流动增强剂。300 ppm BC和1000 ppm XG配合物可实现66%的最大流量增强性能。据信,微流层中可溶性添加剂的干扰将由聚集体尺寸控制,这将导致不同的减阻性能。使用流变仪和低温透射电子显微镜(cryo-TEM)技术测试溶液的流变学和形态学特性。实验结果表明,单独的添加剂及其配合物可以在微通道流动系统中充当有效的流动增强剂。300 ppm BC和1000 ppm XG配合物可实现66%的最大流量增强性能。据信,微流层中可溶性添加剂的干扰将由聚集体尺寸控制,这将导致不同的减阻性能。300 ppm BC和1000 ppm XG配合物可实现66%的最大流量增强性能。据信,微流层中可溶性添加剂的干扰将由聚集体尺寸控制,这将导致不同的减阻性能。300 ppm BC和1000 ppm XG配合物可实现66%的最大流量增强性能。据信,微流层中可溶性添加剂的干扰将由聚集体尺寸控制,这将导致不同的减阻性能。

更新日期:2020-05-19
down
wechat
bug