当前位置: X-MOL 学术Biosens. Bioelectron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nano-enabled sensing approaches for pathogenic bacterial detection.
Biosensors and Bioelectronics ( IF 10.7 ) Pub Date : 2020-05-19 , DOI: 10.1016/j.bios.2020.112276
Maha Alafeef 1 , Parikshit Moitra 2 , Dipanjan Pan 3
Affiliation  

Infectious diseases caused by pathogenic bacteria, especially antibiotic-resistant bacteria, are one of the biggest threats to global health. To date, bacterial contamination is detected using conventional culturing techniques, which are highly dependent on expert users, limited by the processing time and on-site availability. Hence, real-time and continuous monitoring of pathogen levels is required to obtain valuable information that could assist health agencies in guiding prevention and containment of pathogen-related outbreaks. Nanotechnology-based smart sensors are opening new avenues for early and rapid detection of such pathogens at the patient's point-of-care. Nanomaterials can play an essential role in bacterial sensing owing to their unique optical, magnetic, and electrical properties. Carbon nanoparticles, metallic nanoparticles, metal oxide nanoparticles, and various types of nanocomposites are examples of smart nanomaterials that have drawn intense attention in the field of microbial detection. These approaches, together with the advent of modern technologies and coupled with machine learning and wireless communication, represent the future trend in the diagnosis of infectious diseases. This review provides an overview of the recent advancements in the successful harnessing of different nanoparticles for bacterial detection. In the beginning, we have introduced the fundamental concepts and mechanisms behind the design and strategies of the nanoparticles-based diagnostic platform. Representative research efforts are highlighted for in vitro and in vivo detection of bacteria. A comprehensive discussion is then presented to cover the most commonly adopted techniques for bacterial identification, including some seminal studies to detect bacteria at the single-cell level. Finally, we discuss the current challenges and a prospective outlook on the field, together with the recommended solutions.



中文翻译:

用于致病菌检测的纳米传感方法。

由致病菌,尤其是抗生素耐药菌引起的传染病是全球健康面临的最大威胁之一。迄今为止,细菌污染是使用传统培养技术检测的,这些技术高度依赖于专家用户,受处理时间和现场可用性的限制。因此,需要实时和持续监测病原体水平以获得有价值的信息,这些信息可以帮助卫生机构指导预防和控制与病原体相关的疫情。基于纳米技术的智能传感器开辟了在患者护理点早期和快速检测此类病原体的新途径。由于其独特的光学、磁学和电学特性,纳米材料可以在细菌传感中发挥重要作用。碳纳米粒子、金属纳米粒子、金属氧化物纳米粒子和各种类型的纳米复合材料是智能纳米材料的例子,在微生物检测领域引起了广泛关注。这些方法与现代技术的出现以及机器学习和无线通信相结合,代表了传染病诊断的未来趋势。本综述概述了成功利用不同纳米粒子进行细菌检测的最新进展。首先,我们介绍了基于纳米粒子的诊断平台设计和策略背后的基本概念和机制。突出了代表性的研究工作 各种类型的纳米复合材料是智能纳米材料的例子,在微生物检测领域引起了广泛关注。这些方法与现代技术的出现以及机器学习和无线通信相结合,代表了传染病诊断的未来趋势。本综述概述了成功利用不同纳米粒子进行细菌检测的最新进展。首先,我们介绍了基于纳米粒子的诊断平台设计和策略背后的基本概念和机制。突出了代表性的研究工作 各种类型的纳米复合材料是智能纳米材料的例子,在微生物检测领域引起了广泛关注。这些方法与现代技术的出现以及机器学习和无线通信相结合,代表了传染病诊断的未来趋势。本综述概述了成功利用不同纳米粒子进行细菌检测的最新进展。首先,我们介绍了基于纳米粒子的诊断平台设计和策略背后的基本概念和机制。突出了代表性的研究工作 代表了传染病诊断的未来趋势。本综述概述了成功利用不同纳米粒子进行细菌检测的最新进展。首先,我们介绍了基于纳米粒子的诊断平台设计和策略背后的基本概念和机制。突出了代表性的研究工作 代表了传染病诊断的未来趋势。本综述概述了成功利用不同纳米粒子进行细菌检测的最新进展。首先,我们介绍了基于纳米粒子的诊断平台设计和策略背后的基本概念和机制。突出了代表性的研究工作细菌的体外体内检测。然后进行全面讨论,涵盖最常用的细菌鉴定技术,包括一些在单细胞水平检测细菌的开创性研究。最后,我们讨论了当前的挑战和对该领域的展望,以及推荐的解决方案。

更新日期:2020-06-18
down
wechat
bug