当前位置: X-MOL 学术Flow Turbulence Combust. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Numerical Study on Droplet-Particle Collision
Flow, Turbulence and Combustion ( IF 2.0 ) Pub Date : 2020-05-19 , DOI: 10.1007/s10494-020-00153-x
Vitor Vilela , Francisco José de Souza

This paper investigates the collision between a droplet and a spherical particle for non-reacting, isothermal flows based on the design of computer experiment and statistical learning methods, using the Volume of Fluid method along with a momentum conserving formulation on an adaptive octree grid. It has increasingly been a subject of numerical investigation due to the growing demand for full industrial plant control and processes optimization, for instance, fluid catalytic cracking and wet cleaning of dusty gases.Simulations are first validated against experimental data for droplet-to-particle diameter ratio $$D_r=1.75$$ D r = 1.75 , considering the geometrical parameters of the formed lamella, i.e., height, base diameter and remaining liquid thickness on the particle. Since the lamella area is an important factor on mass and heat transfer on common industrial processes, the effects of droplet Reynolds $$[10^3$$ [ 10 3 – $$10^4]$$ 10 4 ] and Weber $$[10^2$$ [ 10 2 – $$10^3]$$ 10 3 ] numbers on this output are investigated using the design of computer experiment, along with a mechanical energy analysis. At dimensionless post-impact time equal to one, the Reynolds and Weber numbers show a negative and a positive effect on the lamella area, respectively. This is in agreement with our mechanical energy analysis of interfacial flows, since we found that the Reynolds number expresses a potential of liquid and gas kinetic energies exchange, whereas the Weber number expresses a potential of liquid kinetic energy and surface energy exchange. Lastly, a correlation for the dimensionless lamella area as function of the dimensionless time, the Reynolds and Weber numbers is proposed based on statistical learning methods.

中文翻译:

液滴与粒子碰撞的数值研究

本文基于计算机实验和统计学习方法的设计,使用流体体积方法以及自适应八叉树网格上的动量守恒公式,研究了液滴和球形粒子之间的碰撞,用于非反应、等温流动。由于对全工业设备控制和工艺优化(例如流化催化裂化和含尘气体的湿法清洁)的需求不断增长,它越来越成为数值研究的主题。 模拟首先根据液滴到颗粒直径的实验数据进行验证比率$$D_r=1.75$$D r = 1.75 ,考虑到所形成薄片的几何参数,即颗粒上的高度、底部直径和剩余液体厚度。由于薄片面积是常见工业过程中传质和传热的重要因素,因此液滴雷诺数 $$[10^3$$ [ 10 3 – $$10^4]$$ 10 4 ] 和韦伯 $$[ 10^2$$ [ 10 2 – $$10^3]$$ 10 3 ] 使用计算机实验设计以及机械能分析来研究此输出上的数字。在无量纲冲击后时间等于 1 时,雷诺数和韦伯数分别对薄片面积显示出负面和正面影响。这与我们对界面流动的机械能分析一致,因为我们发现雷诺数表示液体和气体动能交换的潜力,而韦伯数表示液体动能和表面能交换的潜力。最后,
更新日期:2020-05-19
down
wechat
bug