当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Inducing rapid polysulfide transformation through enhanced interfacial electronic interaction for lithium-sulfur batteries.
Nanoscale ( IF 5.8 ) Pub Date : 2020-05-18 , DOI: 10.1039/d0nr02429e
Chao Shen 1 , Kun Zhang , You You , Hui Wang , Ruiqi Ning , Yaqin Qi , Nan Li , Cuimin Ding , Keyu Xie , Bingqing Wei
Affiliation  

Sluggish dynamics of polysulfide (LiPS) conversion leads to reduced utilization of active sulfur and rapid capacity decay. Introducing catalysts into lithium–sulfur battery systems is a feasible and imperative strategy to tackle this problem. Previous research studies have mainly been focused on selecting new catalysts and design functional structures to improve performance, and ignoring the interaction between catalysts and their carriers. Herein, by simply fabricating a high-efficiency ZnS quantum dot@graphene nanosheet catalyst (ZnS QD@rGO), we utilized enhanced interfacial electronic interaction to accelerate polysulfide conversion for high energy density Li–S batteries. With the smaller size of ZnS, the interfacial electronic interaction becomes more enhanced, which was evidenced by DFT calculations and XPS experiments. After mixing with sulfur, the electrodes achieved a high capacity of 857.8 mA h g−1 at 1 C and a retention of 91.2% after 300 cycles. Also, a sulfur cathode with a high actual capacity of ∼4.0 mA h cm−2 could be obtained, with no obvious capacity decay within 100 cycles. We believe that this strategy represents a new perspective on designing efficient high-load electrodes for Li–S batteries.

中文翻译:

锂硫电池通过增强的界面电子相互作用诱导多硫化物快速转变。

多硫化物(LiPS)转化的缓慢动力学导致活性硫利用率降低和容量衰减迅速。在锂-硫电池系统中引入催化剂是解决该问题的可行且必要的策略。先前的研究主要集中在选择新型催化剂和设计功能结构以改善性能,而忽略了催化剂与其载体之间的相互作用。在这里,通过简单地制造高效的ZnS量子点@石墨烯纳米片催化剂(ZnS QD @ rGO),我们利用增强的界面电子相互作用来加速高能量密度Li-S电池的多硫化物转化。随着ZnS尺寸的减小,界面电子相互作用变得更加增强,这已通过DFT计算和XPS实验得到了证明。在1 C时为-1,在300个循环后的保留率为91.2%。而且,可以获得具有〜4.0mA h cm -2的高实际容量的硫阴极,其在100个循环内没有明显的容量衰减。我们相信,该策略代表了一种设计锂离子电池高效高负荷电极的新视角。
更新日期:2020-07-09
down
wechat
bug