当前位置: X-MOL 学术Nat. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synthesis of mesoscale ordered two-dimensional π-conjugated polymers with semiconducting properties.
Nature Materials ( IF 37.2 ) Pub Date : 2020-05-18 , DOI: 10.1038/s41563-020-0682-z
G Galeotti 1, 2, 3 , F De Marchi 1 , E Hamzehpoor 4 , O MacLean 1 , M Rajeswara Rao 4 , Y Chen 4 , L V Besteiro 1, 5 , D Dettmann 1, 2 , L Ferrari 2 , F Frezza 2, 6 , P M Sheverdyaeva 7 , R Liu 8 , A K Kundu 7 , P Moras 7 , M Ebrahimi 1, 9 , M C Gallagher 8 , F Rosei 1 , D F Perepichka 4 , G Contini 2, 6
Affiliation  

Two-dimensional materials with high charge carrier mobility and tunable band gaps have attracted intense research effort for their potential use in nanoelectronics. Two-dimensional π-conjugated polymers constitute a promising subclass because the band structure can be manipulated by varying the molecular building blocks while preserving key features such as Dirac cones and high charge mobility. The major barriers to the application of two-dimensional π-conjugated polymers have been the small domain size and high defect density attained in the syntheses explored so far. Here, we demonstrate the fabrication of mesoscale ordered two-dimensional π-conjugated polymer kagome lattices with semiconducting properties, Dirac cone structures and flat bands on Au(111). This material has been obtained by combining a rigid azatriangulene precursor and a hot dosing approach, which favours molecular diffusion and eliminates voids in the network. These results open opportunities for the synthesis of two-dimensional π-conjugated polymer Dirac cone materials and their integration into devices.

中文翻译:

具有半导体性能的中尺度有序二维π共轭聚合物的合成。

具有高载流子迁移率和可调带隙的二维材料因其在纳米电子学中的潜在用途而吸引了广泛的研究努力。二维π共轭聚合物构成了一个有前途的子类,因为可以通过改变分子构件来控制能带结构,同时保留诸如狄拉克锥和高电荷迁移率等关键特征。迄今为止,在探索的合成中,二维π共轭聚合物的应用的主要障碍是小域尺寸和高缺陷密度。在这里,我们演示了在Au(111)上具有半导体性能,狄拉克锥结构和平坦带的中尺度有序二维π共轭聚合物kagome晶格的制造。该材料是通过将刚性氮杂三氮烯前体与热配量方法相结合而获得的,该方法有利于分子扩散并消除网络中的空隙。这些结果为二维π共轭聚合物狄拉克锥材料的合成及其将其集成到器件中提供了机会。
更新日期:2020-05-18
down
wechat
bug