当前位置: X-MOL 学术Nat. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Aerobic radical polymerization mediated by microbial metabolism.
Nature Chemistry ( IF 19.2 ) Pub Date : 2020-05-18 , DOI: 10.1038/s41557-020-0460-1
Gang Fan 1, 2 , Austin J Graham 1, 2 , Jayaker Kolli 1 , Nathaniel A Lynd 1, 2 , Benjamin K Keitz 1, 2
Affiliation  

Performing radical polymerizations under ambient conditions is a major challenge because molecular oxygen is an effective radical quencher. Here we show that the facultative electrogen Shewanella oneidensis can control metal-catalysed living radical polymerizations under apparent aerobic conditions by first consuming dissolved oxygen via aerobic respiration, and then directing extracellular electron flux to a metal catalyst. In both open and closed containers, S. oneidensis enabled living radical polymerizations without requiring the preremoval of oxygen. Polymerization activity was closely tied to S. oneidensis anaerobic metabolism through specific extracellular electron transfer proteins and was effective for a variety of monomers using low (parts per million) concentrations of metal catalysts. Finally, polymerizations survived repeated challenges of oxygen exposure and could be initiated using lyophilized or spent (recycled) cells. Overall, our results demonstrate how the unique ability of S. oneidensis to use both oxygen and metals as respiratory electron acceptors can be leveraged to address salient challenges in polymer synthesis.

中文翻译:

由微生物代谢介导的需氧自由基聚合。

在环境条件下进行自由基聚合是一项重大挑战,因为分子氧是一种有效的自由基猝灭剂。在这里,我们表明,兼性电波希瓦氏菌可通过明显的需氧条件控制金属催化的活性自由基聚合,方法是先通过需氧呼吸消耗溶解氧,然后将细胞外电子通量导向金属催化剂。在开放式容器和密闭容器中,沙门氏菌都能进行活性自由基聚合,而无需预先除去氧气。聚合活性通过特定的细胞外电子转移蛋白与沙门氏菌厌氧代谢密切相关,并且对于使用低浓度(百万分之一)的金属催化剂的多种单体有效。最后,聚合反应能够经受反复暴露于氧气中的挑战,并且可以使用冻干或废(回收)细胞引发聚合反应。总体而言,我们的结果证明了如何利用沙门氏菌利用氧气和金属作为呼吸电子受体的独特能力来应对聚合物合成中的重大挑战。
更新日期:2020-05-18
down
wechat
bug