当前位置: X-MOL 学术Geomech. Energy Environ. › 论文详情
Investigating effects of temperature and confining pressure on dynamic elastic properties and permeability—An experimental study
Geomechanics for Energy and the Environment ( IF 2.077 ) Pub Date : 2020-01-13 , DOI: 10.1016/j.gete.2020.100179
Mahdi Ramezanian; Hossein Emadi

Unconventional reservoirs refer to hydrocarbon reservoirs that require special stimulation treatments, such as hydraulic fracturing, to economically produce hydrocarbon. These reservoirs are tight with very low permeability, less than 0.1 milli Darcy (0.1 mD). Shale oil and shale gas reservoirs are prime examples of unconventional reservoirs. Effects of temperature on unconventional reservoirs’ dynamic elastic properties and permeability are usually overlooked during laboratory measurements and reservoir simulations leading to erroneous results and unsuccessful stimulation operations. To investigate effects of temperature and confining pressure on dynamic elastic properties and permeability of unconventional core samples, two series of experiment were conducted on outcrop core samples from three prominent unconventional basins (Barnett, Wolfcamp, and Eagle Ford) in the United States. In the first set of experiments, eleven unsaturated outcrop core samples (four Barnett, four Eagle Ford, and three Wolfcamp) were used to assess effects of temperature and confining pressure on their dynamic elastic properties. In the second set of the experiments, seven core samples (two Barnett, two Eagle Ford, and three Wolfcamp) were used to study effect of temperature on their permeability at a constant confining pressure. Also, X-ray diffraction (XRD) analysis was conducted on core samples to determine the mineral compositions them. The results were then used to study effect of mineralogy on the rock samples’ dynamic elastic properties and permeability. The results of this experimental study show that increase in temperature makes the core samples more ductile and less permeable. The results also demonstrate that the degree of the effect of the temperature on the dynamic elastic properties of the samples is directly related to the presence and volume of the clay minerals.
更新日期:2020-01-13

 

全部期刊列表>>
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
段炼
清华大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
电子显微学
何凤
洛杉矶分校
吴杰
赵延川
试剂库存
天合科研
down
wechat
bug