当前位置: X-MOL 学术Int. J. Therm. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation of heat transfer improvement at idealized microcellular scale for metal foam incorporated with paraffin
International Journal of Thermal Sciences ( IF 4.5 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.ijthermalsci.2020.106444
Ratiba Sabrina Ferfera , Brahim Madani , Rafik Serhane

Abstract In this work, a microcellular model is developed to study the thermal behavior of a plate constituted of paraffin impregnated in metal foam. A three-dimensional model is considered using the finite elements method (FEM) with a body centered cubic (BCC) shape as a geometric configuration. COMSOL Multiphysics software is used to build the geometry and to conduct the calculation. The effects of porosity on the effective thermal conductivity, as well as on the thermal management performance of the composite plate are investigated. The model is calibrated using experimental data obtained in-situ. The results are found in good agreement with the experimental data from the literature. The decrease in the porosity results in an increase in the effective thermal conductivity of the metal foam, which makes the heat diffusion in the composite material faster than that in pure paraffin. Due to the contact surface between the metal foam and paraffin which is large in this case, it is found that a small pore diameter uniforms well the melting front and the temperature inside the composite.

中文翻译:

含石蜡金属泡沫在理想化微孔尺度上的传热改进研究

摘要 在这项工作中,开发了一种微孔模型来研究由浸渍在金属泡沫中的石蜡构成的板的热行为。使用有限元方法 (FEM) 来考虑三维模型,其中体心立方 (BCC) 形状作为几何配置。COMSOL Multiphysics 软件用于构建几何图形并进行计算。研究了孔隙率对有效导热系数的影响,以及对复合板的热管理性能的影响。该模型使用现场获得的实验数据进行校准。结果与文献中的实验数据非常吻合。孔隙率的降低导致金属泡沫的有效热导率增加,这使得复合材料中的热扩散比纯石蜡更快。由于在这种情况下金属泡沫和石蜡之间的接触面很大,因此发现小孔径使复合材料内部的熔融前沿和温度均匀。
更新日期:2020-10-01
down
wechat
bug