当前位置: X-MOL 学术bioRxiv. Bioeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multi-channel intraneural vagus nerve recordings with a novel high-density carbon fiber microelectrode array
bioRxiv - Bioengineering Pub Date : 2020-08-19 , DOI: 10.1101/2020.05.15.098301
Ahmad A. Jiman , David C. Ratze , Elissa J. Welle , Paras R. Patel , Julianna M. Richie , Elizabeth C. Bottorff , John P. Seymour , Cynthia A. Chestek , Tim M. Bruns

Autonomic nerves convey essential neural signals that regulate vital body functions. Recording clearly distinctive physiological neural signals from autonomic nerves will help develop new treatments for restoring regulatory functions. However, this is very challenging due to the small nature of autonomic nerves and the low-amplitude signals from their small axons. We developed a multi-channel, high-density, intraneural carbon fiber microelectrode array (CFMA) with ultra-small electrodes (8-9 μm in diameter, 150-250 μm in length) for recording physiological action potentials from small autonomic nerves. In this study, we inserted CFMA with up to 16 recording carbon fibers in the cervical vagus nerve of 22 isoflurane-anesthetized rats. We recorded action potentials with peak-to-peak amplitudes of 15.1-91.7 μV and signal-to-noise ratios of 2.0-8.3 on multiple carbon fibers per experiment, determined conduction velocities of some vagal signals in the afferent (0.7-1.0 m/sec) and efferent (0.7-8.8 m/sec) directions, and monitored firing rate changes in breathing and blood glucose modulated conditions. Overall, these experiments demonstrated that CFMAs are a novel interface for in-vivo intraneural action potential recordings. This work is considerable progress towards the comprehensive understanding of physiological neural signaling in vital regulatory functions controlled by autonomic nerves.

中文翻译:

新型高密度碳纤维微电极阵列的多通道神经内迷走神经录音

自主神经传达调节人体重要功能的基本神经信号。记录来自自主神经的明显独特的生理神经信号将有助于开发恢复调节功能的新疗法。但是,由于自主神经的性质较小且来自其小轴突的低振幅信号,这非常具有挑战性。我们开发了具有超小电极(直径8-9μm,长度150-250μm)的多通道,高密度神经内碳纤维微电极阵列(CFMA),用于记录小自主神经的生理动作电位。在这项研究中,我们向22只异氟醚麻醉大鼠的迷走神经中插入了多达16条记录碳纤维的CFMA。我们记录的动作电位峰峰幅度为15.1-91.7μV,信噪比为2.0-8。每个实验在3条碳纤维上测定3种迷走神经信号在传入(0.7-1.0 m / sec)和传出(0.7-8.8 m / sec)方向上的传导速度,并监测呼吸和血糖调节条件下的放电速率变化。总体而言,这些实验表明CFMA是体内神经内动作电位记录的新型接口。这项工作对于全面了解由自主神经控制的重要调节功能中的生理神经信号具有重大进展。这些实验证明CFMA是体内神经内动作电位记录的新型接口。这项工作对于全面了解由自主神经控制的重要调节功能中的生理神经信号具有重大进展。这些实验证明CFMA是体内神经内动作电位记录的新型接口。这项工作对于全面了解由自主神经控制的重要调节功能中的生理神经信号具有重大进展。
更新日期:2020-08-20
down
wechat
bug