当前位置: X-MOL 学术Methods Ecol. Evol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The omnistat: A flexible continuous‐culture system for prolonged experimental evolution
Methods in Ecology and Evolution ( IF 6.3 ) Pub Date : 2020-07-05 , DOI: 10.1111/2041-210x.13403
David M Ekkers 1 , Filipe Branco Dos Santos 2, 3 , Cyrus A Mallon 1 , Frank Bruggeman 3 , G Sander van Doorn 1
Affiliation  

  1. Microbial evolution experiments provide a powerful tool to unravel the molecular basis of adaptive evolution but their outcomes can be difficult to interpret, unless the selective forces that are applied during the experiment are carefully controlled. In this respect, experimental evolution in continuous cultures provides advantages over commonly used sequential batch‐culture protocols because continuous cultures allow for more accurate control over the induced selective environment. However, commercial continuous‐culture systems are large and expensive, while available DIY continuous‐culture systems are not versatile enough to allow for multiple sensors and rigorous stirring.
  2. We present a modular continuous‐culture system that adopts the commonly used GL45 glass laboratory bottle as a bioreactor vessel. Our design offers three advantages: first, it is equipped with a large head plate, fitting two sensors and seven input/output ports, enabling the customization of the system for many running modes (chemostat, auxostat, etc.). Second, the bioreactor is small (25–250 ml), which makes it feasible to run many replicates in parallel. Third, bioreactor modules can be coupled by uni‐ or bi‐directional flows to induce spatiotemporal variation in selection. These features result in a particularly flexible culturing platform that facilitates the investigation of a broad range of evolutionary and ecological questions.
  3. To illustrate the versatility of our culturing system, we outline two evolution experiments that impose a temporally or spatially variable regime of selection. The first experiment illustrates how controlled temporal variation in resource availability can be utilized to select for anticipatory switching. The second experiment illustrates a spatially structured morbidostat setup that is designed to probe epistatic interactions between adaptive mutations. Furthermore, we demonstrate how sensor data can be used to stabilize selection pressures or track evolutionary adaptation.
  4. Evolution experiments in which populations are exposed to controlled spatiotemporal variation, are essential to gain insight into the process of adaptation and the mechanisms that constrain evolution. Continuous‐culture systems, like the one presented here, offer control over key environmental parameters and establish a well‐defined regime of selection. As such, they create the opportunity to expose evolutionary constraints in the form of phenotypic trade‐offs, contributing to a mechanistic understanding of adaptive evolution.


中文翻译:


Omnistat:用于长期实验进化的灵活连续培养系统



  1. 微生物进化实验提供了一个强大的工具来揭示适应性进化的分子基础,但其结果可能很难解释,除非实验过程中施加的选择力得到仔细控制。在这方面,连续培养中的实验进化比常用的顺序分批培养方案具有优势,因为连续培养可以更准确地控制诱导的选择性环境。然而,商业连续培养系统庞大且昂贵,而可用的 DIY 连续培养系统的通用性不足以支持多个传感器和严格搅拌。

  2. 我们提出了一种模块化连续培养系统,采用常用的GL45玻璃实验室瓶作为生物反应器容器。我们的设计具有三个优点:首先,它配备了一个大头板,安装了两个传感器和七个输入/输出端口,使得系统能够针对多种运行模式(恒化器、辅助恒温器等)进行定制。其次,生物反应器很小(25-250 毫升),这使得可以并行运行多个重复。第三,生物反应器模块可以通过单向或双向流耦合,以诱导选择的时空变化。这些特征形成了一个特别灵活的培养平台,有利于广泛的进化和生态问题的调查。

  3. 为了说明我们的培养系统的多功能性,我们概述了两个进化实验,它们施加了时间或空间可变的选择机制。第一个实验说明了如何利用资源可用性的受控时间变化来选择预期切换。第二个实验说明了空间结构的morbidostat设置,旨在探测适应性突变之间的上位相互作用。此外,我们还演示了如何使用传感器数据来稳定选择压力或跟踪进化适应。

  4. 使种群暴露于受控时空变化的进化实验对于深入了解适应过程和限制进化的机制至关重要。连续培养系统,就像这里介绍的那样,可以控制关​​键的环境参数并建立明确的选择制度。因此,它们创造了以表型权衡的形式暴露进化限制的机会,有助于对适应性进化的机械理解。
更新日期:2020-07-05
down
wechat
bug