当前位置: X-MOL 学术J. Biomed. Mater. Res. Part A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D printing of high-strength, porous, elastomeric structures to promote tissue integration of implants.
Journal of Biomedical Materials Research Part A ( IF 3.9 ) Pub Date : 2020-05-17 , DOI: 10.1002/jbm.a.37006
Bijan Abar 1 , Alejandro Alonso-Calleja 2 , Alexander Kelly 1 , Cambre Kelly 1 , Ken Gall 1 , Jennifer L West 2
Affiliation  

Despite advances in biomaterials research, there is no ideal device for replacing weight‐bearing soft tissues like menisci or intervertebral discs due to poor integration with tissues and mechanical property mismatch. Designing an implant with a soft and porous tissue‐contacting structure using a material conducive to cell attachment and growth could potentially address these limitations. Polycarbonate urethane (PCU) is a soft and tough biocompatible material that can be 3D printed into porous structures with controlled pore sizes. Porous biomaterials of appropriate chemistries can support cell proliferation and tissue ingrowth, but their optimal design parameters remain unclear. To investigate this, porous PCU structures were 3D‐printed in a crosshatch pattern with a range of in‐plane pore sizes (0 to 800 μm) forming fully interconnected porous networks. Printed porous structures had ultimate tensile strengths ranging from 1.9 to 11.6 MPa, strains to failure ranging from 300 to 486%, Young's moduli ranging from 0.85 to 12.42 MPa, and porosity ranging from 13 to 71%. These porous networks can be loaded with hydrogels, such as collagen gels, to provide additional biological support for cells. Bare PCU structures and collagen‐hydrogel‐filled porous PCU support robust NIH/3T3 fibroblast cell line proliferation over 14 days for all pore sizes. Results highlight PCU's potential in the development of tissue‐integrating medical implants.

中文翻译:

高强度、多孔、弹性结构的 3D 打印,以促进植入物的组织整合。

尽管生物材料研究取得了进展,但由于半月板或椎间盘等承重软组织与组织的整合性差和机械性能不匹配,尚无理想的装置来替代它们。使用有助于细胞附着和生长的材料设计具有柔软多孔组织接触结构的植入物可能会解决这些限制。聚碳酸酯聚氨酯 (PCU) 是一种柔软而坚韧的生物相容性材料,可以 3D 打印成具有可控孔径的多孔结构。具有适当化学性质的多孔生物材料可以支持细胞增殖和组织向内生长,但它们的最佳设计参数仍不清楚。为了调查这件事,多孔 PCU 结构以交叉影线图案 3D 打印,具有一系列面内孔径(0 至 800 μm),形成完全互连的多孔网络。印刷多孔结构的极限拉伸强度范围为 1.9 至 11.6 MPa,断裂应变范围为 300 至 486%,杨氏模量范围为 0.85 至 12.42 MPa,孔隙率范围为 13 至 71%。这些多孔网络可以装载水凝胶,如胶原凝胶,为细胞提供额外的生物支持。裸 PCU 结构和填充胶原水凝胶的多孔 PCU 支持所有孔径的 NIH/3T3 成纤维细胞系增殖超过 14 天。结果突出了 PCU 在开发组织整合医疗植入物方面的潜力。失效应变范围为 300% 至 486%,杨氏模量范围为 0.85 至 12.42 MPa,孔隙率范围为 13 至 71%。这些多孔网络可以装载水凝胶,如胶原凝胶,为细胞提供额外的生物支持。裸 PCU 结构和填充胶原水凝胶的多孔 PCU 支持所有孔径的 NIH/3T3 成纤维细胞系增殖超过 14 天。结果突出了 PCU 在开发组织整合医疗植入物方面的潜力。裸 PCU 结构和填充胶原水凝胶的多孔 PCU 支持所有孔径的 NIH/3T3 成纤维细胞系增殖超过 14 天。结果突出了 PCU 在开发组织整合医疗植入物方面的潜力。裸 PCU 结构和填充胶原水凝胶的多孔 PCU 支持所有孔径的 NIH/3T3 成纤维细胞系增殖超过 14 天。结果突出了 PCU 在开发组织整合医疗植入物方面的潜力。
更新日期:2020-05-17
down
wechat
bug