当前位置: X-MOL 学术Process Biochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electron transfer via the non-Mtr respiratory pathway from Shewanella putrefaciens CN-32 for methyl orange bioreduction
Process Biochemistry ( IF 4.4 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.procbio.2020.05.015
Di Min , Lei Cheng , Dong-Feng Liu , Wen-Wei Li , Han-Qing Yu

Abstract Exoelectrogens play the core roles in bioelectrochemical systems (BESs) because of their unique extracellular electron transfer capacity to different electron acceptors. Microbial reduction of azo dyes by exoelectrogens under anaerobic conditions has received great attention because of its eco-friendliness, low cost, and unique extracellular reduction ability. In this work, we unexpectedly found that Shewanella putrefaciens CN-32 adopted a distinctive electron transfer mechanism for bioreduction of MO (methyl orange) compared to the other exoelectrogens. MO reduction by S. putrefaciens CN-32 occurred through mechanisms that were not dependent on the known azoreductase and the Mtr (metal-reducing) respiratory pathway. Some anaerobic regulators (e.g., Fur and EtrA) and periplasmic c-type cytochromes (Sputcn32_2333) might involve in MO reduction by S. putrefaciens CN-32. The major reduction products were 4-aminobenzenesulfonic acid (4-ABA) and N, N-dimethyl-p-phenylenediamine (DPD) and the initial cell density in the reduction system affected MO reduction kinetics by S. putrefaciens CN-32. Moreover, S. putrefaciens CN-32 could utilize multiple mediators such as flavins or anthraquinone-2,6-sodium disulfonate (AQDS) to accelerate MO reduction. Our findings provide a new perspective on the reduction mechanisms of azo dyes by exoelectrogens and might facilitate more efficient utilization of them in BESs for treatments of azo dyes-polluted industrial effluents.

中文翻译:

腐败希瓦氏菌 CN-32 通过非 Mtr 呼吸途径的电子转移用于甲基橙生物还原

摘要 外电原因其独特的细胞外电子向不同电子受体的转移能力而在生物电化学系统(BES)中发挥着核心作用。在厌氧条件下通过外电原微生物还原偶氮染料因其环境友好、成本低和独特的细胞外还原能力而备受关注。在这项工作中,我们意外地发现,与其他外电原相比,腐败希瓦氏菌 CN-32 采用独特的电子转移机制来生物还原 MO(甲基橙)。腐败链球菌 CN-32 通过不依赖于已知的偶氮还原酶和 Mtr(金属还原)呼吸途径的机制进行 MO 还原。一些厌氧调节剂(例如,Fur 和 EtrA) 和周质 c 型细胞色素 (Sputcn32_2333) 可能参与腐败链球菌 CN-32 的 MO 还原。主要的还原产物是 4-氨基苯磺酸 (4-ABA) 和 N, N-二甲基-对苯二胺 (DPD),还原系统中的初始细胞密度影响了腐臭链球菌 CN-32 的 MO 还原动力学。此外,腐败链球菌 CN-32 可以利用多种介质,如黄素或蒽醌-2,6-二磺酸钠 (AQDS) 来加速 MO 还原。我们的研究结果为外生电对偶氮染料的还原机制提供了新的视角,并可能有助于在 BES 中更有效地利用它们来处理偶氮染料污染的工业废水。N-二甲基-对苯二胺 (DPD) 和还原系统中的初始细胞密度影响了腐臭链球菌 CN-32 的 MO 还原动力学。此外,腐败链球菌 CN-32 可以利用多种介质,如黄素或蒽醌-2,6-二磺酸钠 (AQDS) 来加速 MO 还原。我们的研究结果为外生电对偶氮染料的还原机制提供了新的视角,并可能有助于在 BES 中更有效地利用它们来处理偶氮染料污染的工业废水。N-二甲基-对苯二胺 (DPD) 和还原系统中的初始细胞密度影响了腐臭链球菌 CN-32 的 MO 还原动力学。此外,腐败链球菌 CN-32 可以利用多种介质,如黄素或蒽醌-2,6-二磺酸钠 (AQDS) 来加速 MO 还原。我们的研究结果为外生电对偶氮染料的还原机制提供了新的视角,并可能有助于在 BES 中更有效地利用它们来处理偶氮染料污染的工业废水。
更新日期:2020-08-01
down
wechat
bug