当前位置: X-MOL 学术Int. J. Mach. Tool Manu. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A tool-based hybrid laser-electrochemical micromachining process: Experimental investigations and synergistic effects
International Journal of Machine Tools and Manufacture ( IF 14.0 ) Pub Date : 2020-05-16 , DOI: 10.1016/j.ijmachtools.2020.103569
Krishna Kumar Saxena , Jun Qian , Dominiek Reynaerts

This paper proposes a novel tool-based hybrid laser-ECM process which exploits synergy of laser and electrochemical process energies along the same machining axis, thereby enhancing the potential of both processes while compensating and minimizing their limitations. This process combines features from jet-ECM and water jet guided laser processes into a new micromachining process. In this study, details of this tool-based hybrid laser-electrochemical micromachining process are presented and an experimental study on process-material interaction is performed using Inconel IN718 as workpiece material. According to the experimental results, material removal rates of the order of 0.6 mm3/min are obtained. It has been observed that while the process response is material-dependent as well as ECM parameter dependent, the effective laser pulse energy reaching the workpiece surface is the main factor influencing the surface characteristics. Additionally, the electrolyte flow rate affects material removal and also influences laser coupling into the tool-electrode. It has been observed that within a specific process window i.e. pulse-energy 30–45 μJ, flow rate 32–48 ml/min, IEG 20–30 μm, voltage 20–25 V; high quality surfaces are observed with less defects. At pulse energies higher than 60 μJ, the process speed becomes higher but the surface becomes rough due to combined material removal mechanisms taking place. Furthermore, metallographic investigations on the machined surface reveal presence of multiple removal mechanisms such as laser removal, laser assisted electrochemical removal and electrochemical removal depending on the applied laser pulse energy. Overall, this study has shown that hybrid laser-electrochemical micromachining has a high potential to machine advanced metallic alloys with conductivity variations even for high aspect ratio features and needs further research developments.



中文翻译:

基于工具的混合激光-电化学微加工工艺:实验研究和协同效应

本文提出了一种基于工具的新型混合激光ECM工艺,该工艺利用激光和电化学工艺能量沿同一加工轴的协同作用,从而在补偿和最小化其局限性的同时增强了这两种工艺的潜力。此过程将射流ECM和水射流引导的激光过程的功能组合到新的微加工过程中。在这项研究中,将详细介绍这种基于工具的混合激光电化学微加工工艺,并使用Inconel IN718作为工件材料进行工艺与材料相互作用的实验研究。根据实验结果,材料去除率约为0.6 mm 3/ min。已经观察到,尽管过程响应既取决于材料又取决于ECM参数,但到达工件表面的有效激光脉冲能量是影响表面特性的主要因素。另外,电解质流速影响材料去除,并且还影响激光耦合到工具电极中。据观察,在特定的过程窗口内,即脉冲能量为30–45μJ,流速为32–48 ml / min,IEG为20–30μm,电压为20–25V。观察到高质量的表面,缺陷更少。在脉冲能量高于60μJ时,处理速度会提高,但由于发生了多种材料去除机制,因此表面变得粗糙。此外,对加工表面的金相研究表明,存在多种去除机制,例如激光去除,激光辅助电化学去除和电化学去除,具体取决于所施加的激光脉冲能量。总的来说,这项研究表明,激光-电化学混合微加工具有加工电导率变化的先进金属合金的巨大潜力,即使对于高深宽比特征,也需要进一步的研究开发。

更新日期:2020-05-16
down
wechat
bug