当前位置: X-MOL 学术J. Comput. Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3-D Monte Carlo device simulator for variability modeling of p -MOSFETs
Journal of Computational Electronics ( IF 2.2 ) Pub Date : 2020-02-17 , DOI: 10.1007/s10825-020-01461-1
Vinicius V. A. Camargo , Alan C. J. Rossetto , Dragica Vasileska , Gilson I. Wirth

A device simulator for p-MOSFETs, based on the Monte Carlo method for the solution of the Boltzmann transport equation, was developed, and results and implementation challenges are presented and discussed in detail in this paper. By using a Monte Carlo device simulator (MCDS), it is possible to consider effects that affect state-of-the-art devices that cannot be adequately considered using other methods (drift–diffusion, hydrodynamic, etc.). Novel feature of the simulator is that it treats hole–hole and hole–impurity interactions in real space using particle–particle–particle–mesh coupling method, allowing the simulator to account for random dopant fluctuation and charged traps, responsible for random telegraph noise and bias temperature instability, while having a small computational cost enabling statistical simulations. The MCDS shows excellent agreement between experimental data for the hole drift velocity versus electric field and low-field hole mobility versus doping density.

中文翻译:

3-D Monte Carlo器件仿真器,用于p -MOSFET的可变性建模

p的设备模拟器-开发了基于蒙特卡罗方法求解Boltzmann输运方程的-MOSFETs,并在本文中详细讨论了结果和实现挑战。通过使用蒙特卡洛设备仿真器(MCDS),可以考虑影响使用其他方法(漂移扩散,流体动力学等)无法充分考虑的最新设备的影响。该模拟器的新颖之处在于,它使用粒子-粒子-粒子-网格耦合方法来处理现实空间中的孔-孔和孔-杂质相互作用,从而使模拟器能够解决随机的掺杂物波动和带电陷阱,从而造成随机电报噪声和偏置温度不稳定性,同时具有较小的计算成本,可进行统计模拟。
更新日期:2020-02-17
down
wechat
bug