当前位置: X-MOL 学术Micro Nanostruct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Assessment of Dual-Gate AlGaN/GaN MISHEMT for high temperature DC to DC converter
Micro and Nanostructures ( IF 2.7 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.spmi.2020.106574
Preeti Singh , Vandana Kumari , Manoj Saxena , Mridula Gupta

Abstract Numerical assessment of Dual-Gate AlGaN/GaN MISHEMT have been presented in this paper. Analytical model has been developed and the various parameters extracted are surface potential, electric field and threshold voltage for different device specifications. Threshold voltage of nearly 0.15 V has been computed which is nearly same to that of simulated Dual-Gate MISHEMT. Simulations have been performed using ATLAS TCAD tool. Dual-Gate MISHEMT with different gate dielectric materials such as Si3N4 and gate stack combinations like HfO2/Al2O3 has been analyzed. From the results it has been inferred that at higher temperature, drain current and transconductance reduces due to lower electron sheet concentration. Different combinations of gate biases (applied at the second gate i.e. Gate 2 presented near the drain side) has been used for optimizing the device parameter for better switching performance. For DG-MISHEMT with barrier thickness of 22 nm (both the gates connected together), ION/IOFF ratio reduces from 109 to 106 for high temperature (upto 423 K) due to reduced sheet carrier concentration. For inductance load, output drain voltage exhibits voltage range of 9.2V/2.3V for gate pulse of -8V/+2V with 30% duty cycle. Also, it is seen that as barrier thickness is varied from 18 nm to 30 nm, IOFF increases and results in reduced output drain voltages. Performance of Single Gate and Double Gate MISHEMTs has also been compared for DC-to DC converter using inductance load circuit.

中文翻译:

评估用于高温 DC 到 DC 转换器的双栅极 AlGaN/GaN MISHEMT

摘要 本文介绍了双栅极 AlGaN/GaN MISHEMT 的数值评估。已经开发了分析模型,提取的各种参数是不同器件规格的表面电位、电场和阈值电压。已计算出接近 0.15 V 的阈值电压,这与模拟双栅极 MISHEMT 的阈值电压几乎相同。使用 ATLAS TCAD 工具进行了模拟。已经分析了具有不同栅极介电材料(如 Si3N4)和栅极堆叠组合(如 HfO2/Al2O3)的双栅极 MISHEMT。从结果推断,在较高温度下,由于较低的电子层浓度,漏极电流和跨导降低。栅极偏置的不同组合(应用于第二个栅极,即 靠近漏极侧的栅极 2) 已用于优化器件参数以获得更好的开关性能。对于势垒厚度为 22 nm(两个栅极连接在一起)的 DG-MISHEMT,由于薄片载流子浓度降低,高温(高达 423 K)的 ION/IOFF 比从 109 降低到 106。对于电感负载,输出漏极电压的电压范围为 9.2V/2.3V,栅极脉冲为 -8V/+2V,占空比为 30%。此外,可以看出,随着势垒厚度从 18 nm 变化到 30 nm,IOFF 增加并导致输出漏极电压降低。还比较了使用电感负载电路的 DC-DC 转换器的单栅极和双栅极 MISHEMT 的性能。由于薄片载流子浓度降低,高温(高达 423 K)的 ION/IOFF 比从 109 降低到 106。对于电感负载,输出漏极电压的电压范围为 9.2V/2.3V,栅极脉冲为 -8V/+2V,占空比为 30%。此外,可以看出,随着势垒厚度从 18 nm 变化到 30 nm,IOFF 增加并导致输出漏极电压降低。还比较了使用电感负载电路的 DC-DC 转换器的单栅极和双栅极 MISHEMT 的性能。由于薄片载流子浓度降低,高温(高达 423 K)的 ION/IOFF 比从 109 降低到 106。对于电感负载,输出漏极电压的电压范围为 9.2V/2.3V,栅极脉冲为 -8V/+2V,占空比为 30%。此外,可以看出,随着势垒厚度从 18 nm 变化到 30 nm,IOFF 增加并导致输出漏极电压降低。还比较了使用电感负载电路的 DC-DC 转换器的单栅极和双栅极 MISHEMT 的性能。IOFF 增加并导致输出漏极电压降低。还比较了使用电感负载电路的 DC-DC 转换器的单栅极和双栅极 MISHEMT 的性能。IOFF 增加并导致输出漏极电压降低。还比较了使用电感负载电路的 DC-DC 转换器的单栅极和双栅极 MISHEMT 的性能。
更新日期:2020-08-01
down
wechat
bug