当前位置: X-MOL 学术Agric. For. Meteorol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Forests buffer thermal fluctuation better than non-forests
Agricultural and Forest Meteorology ( IF 6.2 ) Pub Date : 2020-07-01 , DOI: 10.1016/j.agrformet.2020.107994
Hua Lin , Chengyi Tu , Junyong Fang , Beniamino Gioli , Benjamin Loubet , Carsten Gruening , Guoyi Zhou , Jason Beringer , Jianguo Huang , Jiří Dušek , Michael Liddell , Pauline Buysse , Peili Shi , Qinghai Song , Shijie Han , Vincenzo Magliulo , Yingnian Li , John Grace

Abstract With the increase in intensity and frequency of extreme climate events, interactions between vegetation and local climate are gaining more and more attention. Both the mean temperature and the temperature fluctuations of vegetation will exert thermal influence on local climate and the life of plants and animals. Many studies have focused on the pattern in the mean canopy surface temperature of vegetation, whereas there is still no systematic study of thermal buffer ability (TBA) of different vegetation types across global biomes. We developed a new method to measure TBA based on the rate of temperature increase, requiring only one radiometer. With this method, we compared TBA of ten vegetation types with contrasting structures, e.g. from grasslands to forests, using data from 133 sites globally. TBA ranged from 5.2 to 21.2 across these sites and biomes. Forests and wetlands buffer thermal fluctuation better than non-forests (grasslands, savannas, and croplands), and the TBA boundary between forests and non-forests was typically around 10. Notably, seriously disturbed and young planted forests displayed a greatly reduced TBA as low as that of non-forests at high latitudes. Canopy height was a primary controller of TBA of forests, while the TBA of grasslands and savannas were mainly determined by energy partition, water availability, and carbon sequestration rates. Our research suggests that both mean values and fluctuations in canopy surface temperature should be considered to predict the risk for plants under extreme events. Protecting mature forests, both at high and low latitudes, is critical to mitigate thermal fluctuation under extreme events.

中文翻译:

森林比非森林更好地缓冲热波动

摘要 随着极端气候事件强度和频率的增加,植被与局地气候的相互作用越来越受到关注。植被的平均温度和温度波动都会对当地气候和动植物的生命产生热影响。许多研究集中在植被平均冠层表面温度的模式上,而仍然没有系统研究全球生物群落中不同植被类型的热缓冲能力(TBA)。我们开发了一种基于温度升高速率测量 TBA 的新方法,只需要一个辐射计。通过这种方法,我们使用来自全球 133 个地点的数据,比较了具有对比结构的十种植被类型的 TBA,例如从草地到森林。TBA 范围从 5.2 到 21。2 跨越这些地点和生物群落。森林和湿地比非森林(草地、热带稀树草原和农田)更好地缓冲热波动,森林和非森林之间的 TBA 边界通常在 10 左右。值得注意的是,严重干扰和年轻的人工林显示出大大降低的 TBA,因为低与高纬度地区的非森林一样。冠层高度是森林 TBA 的主要控制者,而草原和稀树草原的 TBA 主要取决于能量分配、可用水量和固碳率。我们的研究表明,应考虑冠层表面温度的平均值和波动来预测极端事件下植物的风险。保护高纬度和低纬度的成熟森林对于缓解极端事件下的热波动至关重要。森林和湿地比非森林(草地、热带稀树草原和农田)更好地缓冲热波动,森林和非森林之间的 TBA 边界通常在 10 左右。值得注意的是,严重干扰和年轻的人工林显示出大大降低的 TBA,因为低与高纬度的非森林一样。冠层高度是森林 TBA 的主要控制者,而草原和稀树草原的 TBA 主要取决于能量分配、可用水量和固碳率。我们的研究表明,应考虑冠层表面温度的平均值和波动来预测极端事件下植物的风险。保护高纬度和低纬度的成熟森林对于缓解极端事件下的热波动至关重要。森林和湿地比非森林(草地、热带稀树草原和农田)更好地缓冲热波动,森林和非森林之间的 TBA 边界通常在 10 左右。值得注意的是,严重干扰和年轻的人工林显示出大大降低的 TBA,因为低与高纬度的非森林一样。冠层高度是森林 TBA 的主要控制者,而草原和稀树草原的 TBA 主要取决于能量分配、可用水量和固碳率。我们的研究表明,应考虑冠层表面温度的平均值和波动来预测极端事件下植物的风险。保护高纬度和低纬度的成熟森林对于缓解极端事件下的热波动至关重要。
更新日期:2020-07-01
down
wechat
bug