当前位置: X-MOL 学术J. Pure Appl. Algebra › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unique Factorization property of non-Unique Factorization Domains II
Journal of Pure and Applied Algebra ( IF 0.7 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.jpaa.2020.106430
Gyu Whan Chang , Andreas Reinhart

Abstract Let D be an integral domain. A nonzero nonunit a of D is called a valuation element if there is a valuation overring V of D such that a V ∩ D = a D . We say that D is a valuation factorization domain (VFD) if each nonzero nonunit of D can be written as a finite product of valuation elements. In this paper, we study some ring-theoretic properties of VFDs. Among other things, we show that (i) a VFD D is Schreier, and hence Cl t ( D ) = { 0 } , (ii) if D is a PvMD, then D is a VFD if and only if D is a weakly Matlis GCD-domain, if and only if D [ X ] , the polynomial ring over D, is a VFD and (iii) a VFD D is a weakly factorial GCD-domain if and only if D is archimedean. We also study a unique factorization property of VFDs.

中文翻译:

非唯一分解域 II 的唯一分解属性

Abstract 令 D 是一个整数域。D 的非零非单位 a 被称为评估元素,如果存在超过 D 的评估 V 使得 a V ∩ D = a D 。如果 D 的每个非零非单位都可以写为评估元素的有限乘积,我们就说 D 是一个评估因子分解域(VFD)。在本文中,我们研究了 VFD 的一些环论特性。除此之外,我们证明 (i) VFD D 是 Schreier,因此 Cl t ( D ) = { 0 } , (ii) 如果 D 是 PvMD,则 D 是 VFD 当且仅当 D 是弱Matlis GCD 域,当且仅当 D [ X ] (D 上的多项式环)是 VFD 并且 (iii) VFD D 是弱阶乘 GCD 域当且仅当 D 是阿基米德。我们还研究了 VFD 的独特分解特性。
更新日期:2020-12-01
down
wechat
bug