当前位置: X-MOL 学术J. Biomech. › 论文详情
Algorithm to compute muscle excitation patterns that accurately track kinematics using a hybrid of numerical integration and optimization.
Journal of Biomechanics ( IF 2.320 ) Pub Date : 2020-05-14 , DOI: 10.1016/j.jbiomech.2020.109836
Takuma Inai,Tomoya Takabayashi,Mutsuaki Edama,Masayoshi Kubo

Forward dynamic simulation is used to examine the causal relationships between muscle excitation patterns and human movement. The computed muscle control (CMC) algorithm computes a set of muscle excitations for a movement using proportional-derivative control. However, errors between experimental and simulated kinematics may cause rapid movements. Herein, we propose a novel algorithm, i.e., hybrid computed muscle control (HCMC), which uses a hybrid of numerical integration and optimization to compute muscle excitation patterns that accurately track kinematics, even for rapid movements. We compared the muscle excitation patterns and accuracies of the kinematics simulated by HCMC and CMC using synthetic and experimental data. Two simple musculoskeletal models were used. The synthetic data were generated for three repetitive movements from the rest position to the flexed position (the hip, knee, and ankle underwent 10°, 20°, and 10° plantar flexion, respectively) and back to the rest position for various times. Experimental data were obtained for a subject running at 220 steps/min. The maximum errors in all kinematics calculated using the HCMC algorithm were extremely lower than those calculated using CMC algorithm (HCMC: 0.04–0.07° [synthetic data] and 0.00–0.03° [experimental data]; CMC: 1.04–2.41° [synthetic data] and 0.48–2.50 [experimental data]). For rapid movements, muscle excitations estimated using HCMC occurred early and without delay than those estimated using CMC. The HCMC algorithm can provide muscle excitation patterns that accurately track kinematics and may be useful for perturbation studies using forward dynamic simulation of joints characterized by a low range of motion during rapid movements.
更新日期:2020-05-14

 

全部期刊列表>>
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
南京工业大学
清华大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
湖南大学
清华大学
吴杰
赵延川
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug