当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Characterisation of the magnetic response of nanoscale magnetic filaments in applied fields.
Nanoscale ( IF 5.8 ) Pub Date : 2020-05-14 , DOI: 10.1039/d0nr01646b
Deniz Mostarac 1 , Pedro A Sánchez 2 , Sofia Kantorovich 3
Affiliation  

Incorporating magnetic nanoparticles (MNPs) within permanently crosslinked polymer-like structures opens up the possibility for synthesis of complex, highly magneto-responsive systems. Among such structures are chains of prealigned magnetic (ferro- or super-paramagnetic) monomers, permanently crosslinked by means of macromolecules, which we refer to as magnetic filaments (MFs). In this paper, using molecular dynamics simulations, we encompass filament synthesis scenarios, with a compact set of easily tuneable computational models, where we consider two distinct crosslinking approaches, for both ferromagnetic and super-paramagnetic monomers. We characterise the equilibrium structure, correlations and magnetic properties of MFs in static magnetic fields. Calculations show that MFs with ferromagnetic MNPs in crosslinking scenarios where the dipole moment orientations are decoupled from the filament backbone, have similar properties to MFs with super-paramagnetic monomers. At the same time, magnetic properties of MFs with ferromagnetic MNPs are more dependent on the crosslinking approach than they are for ones with super-paramagnetic monomers. Our results show that, in a strong applied field, MFs with super-paramagnetic MNPs have similar magnetic properties to ferromagnetic ones, while exhibiting higher susceptibility in low fields. We find that MFs with super-paramagnetic MNPs have a tendency to bend the backbone locally rather than to fully stretch along the field. We explain this behaviour by supplementing Flory theory with an explicit dipole–dipole interaction potential, with which we can take in to account folded filament configurations. It turns out that the entropy gain obtained through bending compensates an insignificant loss in dipolar energy for the filament lengths considered in the manuscript.

中文翻译:

表征应用领域中的纳米级磁丝的磁响应。

将磁性纳米颗粒(MNP)掺入永久交联的类聚合物结构中,为合成复杂的,高磁响应系统提供了可能性。在这些结构中,有预先排列的磁性(铁或超顺磁性)单体链,它们通过大分子永久交联,我们称其为磁丝(MF)。在本文中,使用分子动力学模拟,我们涵盖了长丝合成场景,并提供了一组易于调整的紧凑计算模型,其中我们针对铁磁性和超顺磁性单体考虑了两种不同的交联方法。我们表征了静态磁场中MF的平衡结构,相关性和磁性。计算表明,在偶极矩方向从灯丝骨架解耦的交联场景中,具有铁磁MNP的MF与具有超顺磁性单体的MF具有相似的特性。同时,与具有超顺磁性单体的MF相比,具有铁磁性MNP的MF的磁性更取决于交联方法。我们的结果表明,在强应用领域中,具有超顺磁性MNP的MF具有与铁磁相似的磁性,而在低磁场中则表现出更高的磁化率。我们发现具有超顺磁性MNP的MF倾向于局部弯曲骨架,而不是沿磁场完全拉伸。我们通过用明确的偶极-偶极相互作用势补充Flory理论来解释这种行为,我们可以利用它来考虑折叠的灯丝配置。事实证明,对于手稿中考虑的灯丝长度,通过弯曲获得的熵增益补偿了偶极能量的微不足道的损失。
更新日期:2020-07-09
down
wechat
bug